LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Fakesch, Jens:

Studienabschlussarbeiten
Faculty of Mathematics, Computer
Science and Stafistics

UNSPECIFIED

Multi-User 3D Augmented Reality Anwendung fur die
gemeinsame Interaktion mit virtuellen 3D Objekten

Master Thesis, Summer Semester 2016

Gutachter: Hohl, Wolfgang ; Fuchs, Christian and Vogel, Jorg

Faculty of Mathematics, Computer Science and Stafistics
Media Informatics

Master

Ludwig-Maximilians-Universitat Munchen

https://doi.org/10.5282/ubm/epub.36648

LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN
Department “Institut fiir Informatik”
Lehr- und Forschungseinheit Medieninformatik
Prof. Dr. Heinrich HuBmann

Masterarbeit

Multi-User 3D Augmented Reality Anwendung fiir die
gemeinsame Interaktion mit virtuellen 3D Objekten

Jens Fakesch

fakesch@cip.ifi.lmu.de
Bearbeitungszeitraum: 25.01.2016 bis 25.07.2016
Betreuer: Dr.-Ing. Wolfgang Hohl
Externer Betreuer: Fuchs & Vogel media solutions GbR

Verantw. Hochschullehrer: Prof. Dr. Heinrich Hufmann

Zusammenfassung

Diese Arbeit beschiftigt sich mit der Entwicklung einer netzwerkgestiitzten Multi-User Aug-
mented Reality Anwendung fiir mobile Endgerite. Ein Prisentator hat die Moglichkeit, 3D-
Modelle dynamisch zu laden, auf einem Augmented Reality 2D-Tracker anzuzeigen und an
einzelnen Objekten Manipulationen durchzufiihren. Diese sind bereits durch die Objekthierarchie
des 3D-Objekts genauer definiert. Ausfithrbare Manipulationen sind die Translation, Rotation,
Skalierung und der Wechsel von Materialien.

Eine beliebige Anzahl von Zuschauern kann der Présentation mit dem eigenen Gerit aus ihrem
selbstgewdhlten Blickwinkel folgen. Befinden sich die Modelldaten nicht auf ihrem Endgerit,
werden sie automatisch vom Prisentator iiber das Netzwerk iibertragen.

Die im Vorfeld getitigten Uberlegungen werden beschrieben, gefolgt von den Details der Im-
plementierung und aufgetretenen Problemen sowie gefundenen Losungen.

Anhand des Prototyps werden mithilfe einer Nutzerstudie Leitlinien fiir die Wahl der Beleuch-
tungsart zwischen statischer, dynamischer oder kombinierter Beleuchtung fiir bestimmte Anwen-
dungsfille festgelegt. Zusitzlich dazu wird in der Studie die Usability der Anwendung iiberpriift.

Abstract

This thesis covers the development of a network supported multi user augmented reality appli-
cation for mobile devices. A presenter can load 3D models dynamically, display them on an
augmented reality 2D tracker and is capable of manipulating certain single objects. These manip-
ulations are already well-defined in advance through the hierarchy of the 3D object. Executable
manipulations are translation, rotation, scaling and the change of materials.

Any number of spectators can follow the presentation with their own device from a point of
view of individual choice. If the data of the model is not present on their own device it will
automatically be transferred from the presenter via network.

Thoughts that were made in advance are described, followed by the details of implementation
and the occured problems as well as chosen solutions.

With the prototype a user study was conducted to define guidelines for the choice of different
kinds of lighting for certain applications. The choice is between static, dynamic and combined
lighting. Additionally the general usability of the app is evaluated in the study.

Aufgabenstellung

Die Arbeit beschiftigt sich mit der Entwicklung einer leicht zu bedienenden netzwerkgestiitzten
Multi-User Augmented Reality Prisentationsanwendung fiir mobile Endgerite und den verschie-
denen Beleuchtungsansitzen in der Augmented Reality.

Durch den Blick durch Tablets oder Augmented Reality Brillen konnen Objekte présentiert
werden, die nicht physisch vor Ort sein miissen. Wichtig ist hierbei die Vernetzung der Anwender,
so dass ein Prasentator virtuell im Vorfeld festgelegte Interaktionen mit 3D-Objekten ausfiihren
kann, die weitere Betrachter wahrnehmen konnen.

Projekte wie Junaio, LecceAR (Banterle et. al.), Layar, Augment oder Wikitude erlauben es
bereits, relativ einfach 3D Objekte in der Welt zu platzieren, bieten aber standardmifig keine
Multi-User Funktionen. Second Surface (Kasahara et. al.) konzentriert sich auf die Kollaboration,
verzichtet jedoch auf 3D Objekte und die Interaktion mit ihnen.

Als Losung soll ein Prototyp einer Anwendung entwickelt werden, der es durch eine benutzer-
freundliche Oberfliche und Vernetzung auch technisch unversierten Personen erméglicht, Produk-
te mithilfe von Augmented Reality zu préasentieren oder diesen Prisentation zu verfolgen. Durch
die Netzwerkunterstiitzung ist es mehreren Benutzern moglich, sich in der selben digitalen Welt
zu bewegen und diese zu erleben.

Anhand des entwickelten Prototyps soll schlieBlich im Laufe einer Nutzerstudie herausge-
funden werden, ob sich Leitlinien fiir die Auswahl hochqualitativer statischer oder anpassbarer
dynamischer Beleuchtung bei bestimmten Anwendungsfillen der Augmented Reality finden las-
sen. Die Arbeit wird in Kooperation mit der Fuchs & Vogel media solutions GbR geschrieben. Die
Entwicklung findet vor Ort in Ottobrunn bei Miinchen statt.

Ich erklére hiermit, dass ich die vorliegende Arbeit selbststindig angefertigt, alle Zitate als solche
kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben habe.

Miinchen, 20. Juli 2016

Inhaltsverzeichnis

1 Einleitung

1.1
1.2

Motivation
Uberblick iiber diese Arbeit

2 Stand der Technik

2.1
2.2

23

24

3.1

32

33
34

4.1
4.2

43
4.4

4.5

Augmented Reality
Tracking

2.2.1 Sensorbasiertes Tracking

2.2.2 Optisches Tracking
2.2.3 Hybrides Tracking

Lichtund Schatten
2.3.1 Beleuchtung in Augmented Reality
232 Schatten.
2.3.3 Schatten in Gameengines
Interaktion
24.1 Manipulation
2.4.2 Gemeinsame Interaktion
3 Konzeption des Prototyps
Technische Grundlagen L
3.1.1 Endgerite und Plattform
3.1.2 Entwicklungsumgebung oL oL
Tracking e
3.2.1 Augmented Reality Library
322 ArtdesTrackings
Lichtund Schatten
Interaktion
34.1 Benutzerrollen L L
3.4.2 Navigationsmoglichkeiten 0oL,
3.4.3 Manipulationsmoglichkeiten, .
3.4.4 Dynamisches Laden und Verteilen der Modelle
4 Implementierung des Prototyps
Entwicklungsumgebung L
Erstellung der 3D-Inhalte
42.1 Software L
4.2.2 Objekthierarchie,
423 Testmodelle
424 BackenderBeleuchtung
4.2.5 Exportin AssetBundles oo
Beleuchtung
Backend L
441 Vuforia
4.4.2 Touchbedienung mit TouchScript
443 DynamischesLaden
444 Netzwerkkommunikation Lo
Frontend
45.1 Hauptmenil

4.5.2 Prisentationsansicht

DO =

O B bW WWwWwWw

p—
N = = O

15
15
15
15
16
16
17
18
19
19
19
20
20

23
23
23
23
24
27
28
31
32
33
33
35
36
37
42
42
44

4.6 Schwierigkeiten bei der Umsetzung 47

4.6.1 Touchbedienung 47
462 Unity UNET 49
Nutzerstudie 53
5.1 Konzeption 53
5.1.1 Anwendungsfdlle 53
5.1.2 Nutzerbefragung o 55
5.1.3 Hypothesen 56
5.1.4 Datenlogging 56
5.2 Durchfithrung 56
5.3 AUSWEIrtUNZ e e e e e 57
5.3.1 Demographie und Hintergrund 57
5.3.2 Anwendungallgemein oL 58
533 Hypothesen 59
5.3.4 Datenlogging e 62
Fazit 65
6.1 Zusammenfassung 65
6.1.1 Prototyp. 65
6.1.2 Beleuchtungsarten 65

6.2 Verbesserungenund Ausblick L. 66

1 EINLEITUNG

1 Einleitung

1.1 Motivation

Durch die rasant steigende Leistungsfihigkeit bei stetig schrumpfender Grofle der Hardware fiir
mobile Endgerite in den letzten Jahren gewinnt auch die Augmented Reality (auch AR) immer
mehr an Bedeutung. AR-Anwendungen wurden erst in letzter Zeit wirklich praktikabel und be-
ginnen nun, sich mehr und mehr zu verbreiten. Das beste Beispiel hierfiir ist der aktuell explo-
sionsartige Erfolg der Augmented Reality Anwendung Pokémon GO, bei der die Spieler in der
realen Welt digitale Monster einfangen und sammeln kdnnen (sieche Abbildung 1.1a). Schon et-
wa eine Woche nach der Veroffentlichung hat die App mehr téglich aktive Nutzer als der weit
verbreitete Kurznachrichtendienst Twitter. Rund 6% der Android-Nutzer in den USA rufen die
Anwendung tédglich auf. Die Spieler verbringen mit ihr mehr Zeit pro Tag als mit Facebook [40].
Diese jiingsten Entwicklungen zeigen eindeutig, dass die mobilen Endgerite und vor allem die
Menschen heutzutage fiir die Augmented Reality bereit sind.

(b)

(a)

Abbildung 1.1: (a) Die Augmented Reality App Pokémon GO [35],
(b) Die AR-Brille Microsoft HoloLens [29].

Auch die fortschreitenden Entwicklungen im Bereich der mobilen Endgerite bestitigen die-
sen Eindruck. Microsoft bringt mit der HoloLens [30] ein Headset auf den Markt, das rein auf AR
ausgelegt ist (sieche Abbildung 1.1b) und auch Googles Project Tango, ein AR-Tablet mit echter
Tiefenwahrnehmung [14], zeigt, dass die Augmented Reality Unterstiitzung von groflen Herstel-
lern und zunkunftsorientierten Tech-Konzernen hat.

Natiirlich ist nicht nur die Unterhaltung ein sinnvoller Einsatzbereich fiir AR-Anwendungen.
Auch auf dem Gebiet der Navigation, Weiterbildung und gerade auch Planung und Prisentation
ergeben sich zahllose Moglichkeiten. Reale oder auch erst in Entwicklung befindliche Objekte
lassen sich als 3D-Modelle abbilden und durch die Augmented Reality leichter in ihrer Struktur
von allen frei wihlbaren Blickwinkeln erfassen. Zwar gibt es viele Anwendungen und relativ leicht
zugingliche Wege, um Modelle auf AR-Trackern in der realen Welt anzeigen zu lassen (siehe
2.1 Augmented Reality unter 2 Stand der Technik), jedoch vernachlédssigen diese das gemeinsame
Erleben der digitalen Welt, den sozialen Aspekt, welcher einer der Faktoren fiir den Erfolg von
Pokémon GO ist.

1.2 Uberblick iiber diese Arbeit 1 EINLEITUNG

Aus diesem Grund soll in dieser Arbeit eine Mehrbenutzeranwendung entwickelt werden. Al-
le Zuschauer, die an einer AR-Prisentation teilnehmen, sollen die selbe virtuelle Welt aus ihrem
eigenen Blickwinkel erleben. Jede Verinderung auf Seiten des Priasentators hat Auswirkungen auf
diese gemeinsame Welt. Der weitere Fokus liegt bei der Entwicklung auf der einfachen Definiti-
on der erlaubten Verdnderungen sowie dem komfortablen Austausch der 3D-Modelle, was einen
dynamischen Ladevorgang erfordert.

Die passende Beleuchtung der Modelle hat dabei einen grolen Einfluss auf die Glaubhaftigkeit
der AR. Anhand des Prototypen lassen sich verschiedenste Anwendungsfille entwickeln, die auf
Interaktionen mit Objekten basieren. Im Zuge dieser Arbeit soll ermittelt werden, ob es allgemein
giiltige Richtlinien fiir die Beleuchtung solcher Fille gibt. Statische vorberechnete Beleuchtung ist
zwar aufwendig umzusetzen, bietet dafiir aber sehr hohe Qualitit und gute Laufzeiteigenschaften.
Dynamische Beleuchtung ist visuell weniger eindrucksvoll, passt sich aber verdndernden Umstén-
den an. Je nach Aufgabe, die man mithilfe einer Augmented Reality Anwendung 16sen mochte,
eignen sich die unterschiedlichen Ansédtze mal mehr und mal weniger. Diese Arbeit soll eine Ent-
scheidungshilfe bei der Wahl zwischen statischer, dynamischer oder einer kombinierten Beleuch-
tung in der Augmented Reality geben.

1.2 Uberblick iiber diese Arbeit

Die Arbeit beginnt mit einem ausfiihrlichen Uberblick iiber den aktuellen Stand der Technik im
Bereich der Augmented Reality und bei Beleuchtung in Gameengines im Allgemeinen. Es wird
erldutert, welche Ansitze es fiir eine glaubhafte Beleuchtung gibt und inwiefern diese fiir mobile
Endgerite verwendbar sind.

AnschlieBend wird die Konzeption des in der Arbeit entwickelten Prototyps beschrieben. Es
wird dargelegt, welche Anforderungen er erfiillen sollte und welche Entscheidungen im Vorfeld
getroffen wurden. Dazu gehoren technische Aspekte wie die Wahl der Entwicklungsumgebung
und der Trackinglibrary, wie aber auch die nutzerzentrierten Entscheidungen, wie die verschiede-
nen Rollen und Interaktionsmoglichkeiten.

Der folgende grofle Abschnitt beschreibt die Implementierung der Anwendung. Das beginnt
bei der Erstellung der 3D-Inhalte nach bestimmten Regeln, beschreibt den Weg aus der Model-
lierungssoftware bis in die fertige Anwendung und anschlieend die (programmier-)technischen
Details des Backends, sowie die gestalterischen Designentscheidungen des Frontends. Der Teil
endet mit einer Erlduterung der im Laufe der Umsetzung aufgetretenen Schwierigkeiten und den
dafiir gefundenen Losungen.

Das darauffolgende Kapitel behandelt die durchgefiihrte Nutzerstudie mit dem Schwerpunkt
Beleuchtung. Es beginnt mit der Konzeption, wie der Entwicklung drei verschiedener Anwen-
dungsfille, des Fragebogens und dem Aufstellen der zu iiberpriifenden Hypothesen. Nachdem die
Details der Durchfithrung dargelegt wurden, werden die im Laufe der Studie gewonnenen Daten
ausgewertet und interpretiert. Stiitzen die gefundenen Ergebnisse die aufgestellten Leitlinien fiir
die Verwendung bestimmter Beleuchtungsansitze bei Augmented Reality oder werden sie wider-
legt?

AbschlieBend folgt ein zusammenfassendes Fazit. Es werden noch einmal kurz und klar die
gewonnenen Erkenntnisse dargelegt und in Zusammenhang zueinander gesetzt. Die Arbeit en-
det mit einem Ausblick auf denkbare zukiinftige Entwicklungen und Einsatzmoglichkeiten dieses
Prototyps.

2 STAND DER TECHNIK

2 Stand der Technik

Im folgenden Abschnitt werden der aktuelle Stand der Technik und bedeutende wissenschaftliche
Arbeiten aus dem Gebiet der AR und der Computergrafik vorgestellt. Die Grundlagen und aus-
fiihrliche Geschichte der AR sollen dabei nicht Teil dieser Arbeit sein, der Fokus liegt vielmehr
auf den technischen Moglichkeiten, Trackingverfahren, der grafischen Darstellung und Mehrbe-
nutzerinteraktionen.

2.1 Augmented Reality

Im Jahr 2010 gaben Krevelen et al. einen umfassenden Uberblick iiber die Geschichte und den
damals aktuellen Stand der Augmented Reality [61]. Die Arbeit beinhaltet eine ausfiihrliche Ein-
ordnung der verschiedenen Displays und Endgerite, Trackingverfahren, User Interfaces und An-
wendungsmoglichkeiten. Eine weitere Zusammenfassung der Entwicklung und Forschung von
Augmented Reality-Technologien bis 2008 bieten Zhou et al. [73]. In ihrer Arbeit analysierten sie
Beitrdge der letzten zehn Jahre der ISMAR (International Symposium on Mixed and Augmented
Reality), der bedeutendsten akademischen Konferenz auf dem Gebiet der Augmented und Mixed
Reality.

Durch die Weiterentwicklung und Miniaturisierung der Technologie, insbesondere von Smart-
phones und Tablets, verbreiteten sich diverse Softwarelésungen und Frameworks, die auch dem
Laien ermoglichten, mit relativ geringem Aufwand selbst AR Anwendungen zu entwickeln. Die
Firma Layar wurde 2009 in den Niederlanden gegriindet [26]. Sie bietet mit der gleichnamigen
App, dem Creator und dem SDK (Software Development Kit) die Moglichkeit, digitale Inhalte mit
Hilfe von verschiedensten Trackern anzuzeigen. Vergleichbares bot die Miinchener Firma Metaio
mit ihrem Junaio AR Browser, dem Creator und dem SDK an. 2015 wurde Metaio von Apple Inc.
iibernommen und bis auf Weiteres geschlossen [11]. Weitere AR SDKs mit vergleichbaren Funk-
tionen sind Wikitude [69], Augment [2] oder das inzwischen ebenfalls eingestellte String [51].
Zuverldssige Trackingtechnologie mit API-Anbindung in C++, Java, Objective-C und .Net, sowie
Anbindung an die Unity Game Engine bietet das Vuforia Augmented Reality SDK [62]. Ehemals
von Qualcomm betrieben, wurde Vuforia 2015 von PTC iibernommen [44].

2.2 Tracking

Um die Position und Orientierung der Kamera und damit des Betrachters im Raum zu ermitteln,
gibt es bei Augmented Reality verschiedene Trackingverfahren. Zhou et al. [73] ordnen diese in
die folgenden drei Grundkategorien ein.

2.2.1 Sensorbasiertes Tracking

Das sensorbasierte Tracking benutzt fiir die rdumliche Einordnung verschiedenste Sensoren. Die
unterschiedlichen Verfahren werden von Rolland et al. [47] detailliert vorgestellt. Magnetische
Sensoren messen die Position in einem magnetischen Feld. Akustische Sensoren bieten die Mog-
lichkeit, durch Ultraschallsender und -empfénger aktuelle Positionen zu berechnen. Neigungs-
sensoren und Gyroskope messen die Orientierung und Beschleunigung getrackter Objekte. Im
Jahr 2006 stellten Kihiri et al. MARA vor [21]. Hierbei handelte es sich um ein Mobiltelefon
mit zusdtzlich befestigter Sensorhardware, mit deren Hilfe das Tracking verbessert wurde (sie-
he Abbildung 2.1a). Die hier unhandlich extern befestigten Sensoren wie GPS-Empfinger und
Beschleunigungsmesser sind heutzutage in modernen Mobiltelefonen und Tablets bereits intern
eingebaut und konnen fiir zuverlissigeres Tracking benutzt werden.

Jede dieser nicht optischen Sensorarten bieten jedoch Vor- und Nachteile, wie Storungen durch
die Umwelt oder Ungenauigkeit, so dass sie fiir optimale Ergebnisse kombiniert werden soll-
ten. 2004 taten dies Newman et al. mit ihrem Ubiquitous Tracking [34]. Hier wurden Daten aus

2.2 Tracking 2 STAND DER TECHNIK

verschiedenen Sensoren kombiniert, dynamisch und automatisch verrechnet und schlieflich fiir
weitere Anwendung zu Verfiigung gestellt. Allgemein gab es jedoch im Bereich des rein sensor-
basierten Trackings in den letzten Jahren keine herausstechenden Weiterentwicklungen, da die
Technologie an sich schon seit lingerem gut entwickelt ist [73].

(b)

Abbildung 2.1: (a) MARA, ein Mobiltelefon mit zusétzlicher Sensorhardware [21],
(b) Optisches Tracking mit klassischem schwarzweiflen 2D-Marker [22].

2.2.2 Optisches Tracking

Das optische Tracking mit Hilfe von Kameras ist nach Zhou et al. der Schwerpunkt der Augmen-
ted Reality Trackingforschung [73]. Hierbei werden Bildverarbeitungsverfahren benutzt um die
Position der Kamera im Raum zu berechnen. Die optischen Verfahren lassen sich in zwei Katego-
rien unterteilen: feature-based, also merkmalbasiertes und model-based, modellbasiertes Tracking
[43]. Beim merkmalbasierten Ansatz wird das Bild auf zweidimensionale Merkmale untersucht.
Dies konnen unter anderem geometrische Grundformen [49] oder Konturen von Objekten sein
[18]. Das modernere modellbasierte Tracking arbeitet mit einem 3D Modell des tatséchlichen zu
verfolgenden Objekts. Zur Registrierung des Objekts werden jedoch auch hier 2D Ansétze wie die
Kantenerkennung eingesetzt [27]. Die ersten Ansétze fiir optisches Tracking verwendeten vorde-
finierte zweidimensionale Marker (sieche Abbildung 2.1b). So auch das ARToolKit [24], ein weit
verbreitetes Framework, welches bereits 1999 vorgestellt wurde. Andere Verfahren nutzten das
Auswerten von nicht hiindisch platzierten Merkmalen, wie die Erkennung von in dem Bild auf-
tretenden Linien oder Texturen von Objekten, sogenannten natiirlichen Markern [38]. Seit einer
zusammenfassenden Arbeit iiber markerbasiertes Tracking von Zhang et al. im Jahr 2002 [72] er-
gaben sich aber auch hier im wissenschaftlichen Bereich keine weitreichenden Neuentwicklungen
mehr.

Erwihnenswert ist jedoch das Extended Tracking des Vuforia AR Frameworks [63]. Hierbei
werden, zusétzlich zum Marker selbst, Merkmale der Umgebung verwendet, um das Tracking
aufrecht zu erhalten auch wenn der Marker sich nicht mehr im Bild befindet. Das Vuforia Frame-
work bietet neben Erkennung selbst definierter und vorgefertigter 2D Marker auch das erwihnte
modellbasierte Tracking [66].

2.2.3 Hybrides Tracking

Das hybride Tracking verwendet eine Kombination der vorherigen Ansétze. Da in einigen Situa-
tionen das rein sensorische oder rein optische Verfahren nicht zufriedenstellend sein kann, ver-
bessert das Zusammenwirken der beiden das Trackingergebnis. Nach Azuma et al. [4] ist fiir das
Tracking in der unkontrollierten freien Umgebung der hybride Ansatz unerlisslich. Der visuelle

4

2 STAND DER TECHNIK 2.3 Licht und Schatten

Kanal wird hier durch GPS und Lagesensoren unterstiitzt. Lang et al. stellten 2002 die Kombi-
nation von sichtbasiertem Tracking mit einem leichten giinstigen zusammengesetzten System aus
Beschleunigungssensoren und Gyroskop vor [25]. Durch hybride Verfahren wird das Tracking
schneller und robuster und bietet die Moglichkeit der Bewegungsvorhersage [41]. Seit 2014 arbei-
tet Google an Project Tango, einer Technologieplattform, die verbessertes rdumliches Tracking fiir
mobile Gerite ermdglichen soll. Die Verwendung von zwei Kameras, statt wie sonst iiblich nur ei-
ner, erlaubt Tiefenwahrnehmung. Unterstiitzt durch Beschleunigungsmesser und Gyroskop bietet
sie zuverldssiges Motiontracking [14]. Viele der modernen AR SDKSs bedienen sich des hybriden
Trackings, um so ein prézises und glaubhaftes Ergebnis zu gewihrleisten.

2.3 Licht und Schatten

Licht und Schatten sind im Bereich der computergenerierten Grafiken seit jeher ein Schwerpunkt-
thema. Sie haben groflen Einfluss auf den Realitétsgrad von virtuellen Welten, weshalb sie stets
im Fokus der Forschung standen. Bei der Augmented Reality ist neben dem Realismus auch die
Performanz entscheidend, sowie die Anpassung an die reale umgebende Welt. Die wichtigsten
Arbeiten und Entwicklungen zu diesen Themen werden in den folgenden Abschnitten vorgestellt.

2.3.1 Beleuchtung in Augmented Reality

Eine Klassifizierung verschiedener Beleuchtungsmethoden nahmen Jacobs und Loscos im Jahr
2006 vor [20]. Die Arbeit bedient sich des Konzepts der Mixed Reality, einem Oberbegriff fiir
die Kombination aus realen und virtuellen Elementen, welcher von Milgram und Kishino bereits
1994 eingeordnet wurde [31]. Da die Augmented Reality hiernach ein Teil der Mixed Reality
ist, ist die Klassifizierung auch hier anwendbar. Es werden drei verschiedenen grundlegende Be-
leuchtungsmethoden genannt: common illumination, relighting und inverse illumination. Common
illumination bezeichnet die Methoden, bei denen eine Beleuchtungsiiberblendung stattfindet, wie
zum Beispiel der Schattenwurf von realen Objekten auf virtuelle und umgekehrt. Hierbei darf die
Beleuchtung nicht verdndert werden und bleibt statisch. Relighting, also die Neubeleuchtung, er-
moglicht die Anderung der Lichtverhiltnisse der Szene. Hierzu wird die Beleuchtung der realen
Szene analysiert und soweit moglich virtuell abgeschaltet. Das ermoglicht die virtuelle Neube-
leuchtung der kompletten Szene und somit ein einheitliches Ergebnis. Bei inverse illumination,
auch physikalisch basierte Beleuchtung genannt, wird versucht die physikalischen Eigenschaften
aller Objekte zu ermitteln, sowie die Positionen und Eigenschaften der realen Lichtquellen. An-
hand dieser Informationen konnen die virtuellen Objekte nun realistisch in die Szene eingefiigt
werden. Einen Uberblick zu dieser Methode bieten Patow und Pueyo [39].

Die fotorealistische Beleuchtung von virtuellen Elementen in realen Szenen in Echtzeit ist
mit der Weiterentwicklung der Renderverfahren und auch der leistungsfihigeren Hardware inzwi-
schen prinzipiell moglich. Praktikabel und mobil sind die Verfahren jedoch in der Regel nicht.
Die optisch hochwertigsten Ergebnisse miissen mit hohem Rechenaufwand erkauft werden, was
stationédre Desktop-PCs und/oder zu geringe Frameraten bedeutet. Die direkte Anwendbarkeit fiir
mobile AR entfillt somit meist noch.

Eine Technik, die die Umgebungsbeleuchtung bei der Berechnung von harten und zusétz-
lich auch weichen Schatten mit einbezieht wurde mit dem Verfahren der Lichtfaktorisierung von
Nowrouzezahrai et al. 2011 vorgestellt [37]. Hier wurden hohe Frameraten von iiber 70 FPS er-
reicht, jedoch behandelte die Arbeit nur die Schattierung. Kan und Kaufmann stellten 2013 einen
GPU-basierten Ansatz vor, der durch Raytracing sogar indirekte Illumination und Refraktion bot
und die bisherigen vergleichbaren Ansitze in Sachen Performanz iibertraf [22] (sieche Abbildung
2.2). Auf einer Nvidia GeForce GTX 690 Grafikkarte wurden bei einer geringen PAL Auflosung
von 720x576 Pixeln jedoch trotz dessen nur Frameraten von im Schnitt etwa 10 bis 15 FPS er-
reicht. 2014 verdffentlichen Gruber et al. ein Verfahren fiir den effizienten und robusten Strah-

2.3 Licht und Schatten 2 STAND DER TECHNIK

lungstransfer zwischen sich veridndernden realen und virtuellen Objekten [15]. Auch hier wurden
auf einer Nvidia GeForce GTX 780 bei einer noch geringeren Auflosung von 640x480 Pixeln nur
Frameraten um 10 FPS erreicht.

Abbildung 2.2: Die hohe Qualitédt der Darstellung nach Kan et al. [22] mit Refraktion im Glaskér-
per sowie indirekter Illumination. Beide Objekte im Vordergrund sind virtuell.

Um virtuelle Objekte glaubhaft in die reale Szene einzubetten, gibt es den Grundansatz, die
aktuelle Lichtsituation zu ermitteln und diese Beleuchtung auf die kiinstlich erzeugten Objekte zu
ibertragen. Das Einfangen der Lichtverhiltnisse kann auf mehrere Arten geschehen. Borg et al.
erstellten bei ihrem Verfahren eine High Dynamic Range (HDR) Map [5]. Dabei handelt es sich
um eine 360° Abbildung der Umgebung, aufgenommen durch ein Fischaugenobjektiv oder zusam-
mengesetzt aus mehreren Einzelbildern. Durch Aufnahmen mit verschiedenen Belichtungseinstel-
lungen und ihrer Kombination zu einer einzelnen HDR Map kann ein hoherer Belichtungsbereich
abgedeckt werden als bei herkommlichen Einzelaufnahmen. Mit den Informationen aus der HDR
Map kann das virtuelle Objekt schlieflich realistisch ausgeleuchtet und eingefiigt werden. An-
statt einer statischen, vordefinierten Map kann auch eine dynamische Map verwendet werden, die
anstelle von Fotokameras mit Videokameras zur Laufzeit aufgezeichnet und verarbeitet wird (so
geschehen bei [46]). Das ermoglicht sich verdndernde Umgebungen und Lichtverhéltnisse, der
Berechnungsaufwand steigt jedoch enorm.

Die Beleuchtung mittels HDR Map wurde bereits 1998 von Paul Debevec beschrieben [10].
Er benutzte zur Erstellung der Map eine light probe, ein Objekt mit dessen Hilfe das Licht ein-
gefangen wird. In seinem Fall handelte es sich dabei um ein simple verspiegelte Kugel welche
fotografiert wurde. Im Laufe der Zeit wurden light probes, auch shading probes genannt, wei-
terentwickelt. 2013 stellten Calian et al. verschiedene Probes vor, die mittels 3D-Druck erstellt
wurden und deren Konstruktion sich an der Umgebung orientierte [6] (siche Abbildung 2.3). So
unterschieden sich Probes fiir den Innen- und Auflenraum in der Verteilung und Unterteilung von
Messpunkten. Zusétzlich fingen sie nicht das einfallende Licht sondern die Schattierung direkt ein,
was einen aufwendigen Berechnungsschritt ersparte.

Moderne Renderengines erlauben es heutzutage, Bilder zu berechnen, die von Fotografien so
gut wie nicht mehr unterscheidbar sind. Die notwendigen Rechenschritte fiir fotorealistische Er-
gebnisse, wie Einfall und Reflexionen von Lichtstrahlen und weiteren physikalisch korrekten Ef-
fekten, bendtigen trotz fortschreitender Optimierung und Weiterentwicklung der Hardware immer
noch eine gewisse Rechendauer, die von einer Echtzeitdarstellung weit entfernt ist.

2 STAND DER TECHNIK 2.3 Licht und Schatten

O
o

Abbildung 2.3: Eine mit 3D-Druck erstellte Shading Probe nach Calian et al. [6]. Das rechte Bild
zeigt die ermittelten Shadingwerte der verschiedenen Messpunkte.

Die Darstellung in Echtzeitrenderengines bedient sich deshalb seit jeher mehr oder weniger
priazisen Annidherungen, die zwar die Reduzierung von Rechenschritten und damit hohe Framera-
ten ermoglichen, dadurch aber auch eine Reduzierung der optischen Qualitit zur Folge haben.

2.3.2 Schatten

Ein wichtiges Thema in der Entwicklung der Computergrafik ist die Darstellung von Schatten.
Realistischer Schattenwurf trigt einen Grofiteil zur Glaubhaftigkeit einer computergenerierten
Szene bei und ermdglicht es, Objekte rdumlich besser einzuordnen. Besonders deutlich wird dies
bei AR, wo sich der virtuelle Inhalt in die reale Umgebung einfiigen muss. Durch den direkten
Vergleich zwischen der realen und der berechneten Beschattung, stechen Diskrepanzen besonders
hervor. Einen grundlegenden Uberblick iiber verschiedenste Methoden der Schattenberechnung
bieten Woo et al. [71].

Ein weit verbreiteter Ansatz zur performanten Berechnung von Schatten ist das sogenannte
Shadow Mapping, bereits im Jahre 1974 von Catmull grundsétzlich beschrieben [7] und 1978 von
Williams erweitert [70]. Eine Shadow Map ist ein Tiefenbuffer der Geometrie der Szene aus Sicht
der Lichtquelle (siehe Abbildung 2.4a). Um herauszufinden, ob ein Punkt in der Szene im Schat-
ten liegt, wird seine Entfernung zur Lichtquelle berechnet. Ist der Wert hierbei groBer als der des
entsprechenden Punktes im Tiefenbuffer, ist er aus Sicht der Lichtquelle verdeckt und liegt im
Schatten. Da Shadow Maps von der Grafikhardware unterstiitzt werden, sind sie performant. Sie
sind allerdings auch anfillig fiir Artefakte, was mit der Abtastrate, der Auflésung der Map zu-
sammenhingt. Hierdurch entsteht eine Treppenbildung an den Kanten der Schatten, das Aliasing
(siehe Abbildung 2.4b). Gegenmalinahmen sind diverse Filterverfahren (zum Beispiel das Antia-
liasing von Reeves et al. [45]), Anpassungen bei der Berechnung der Map (z.B. [1]) oder simpler
jedoch rechenintensiver: eine Shadow Map mit einer hoheren Sampleanzahl.

2.3 Licht und Schatten 2 STAND DER TECHNIK

(a) (b)

Abbildung 2.4: (a) Eine Shadow Map mit Tiefeninformationen aus Sicht der Lichtquelle,
(b) Aliasing bei Shadow Mapping [8].

Eine weitere grundsitzliche Herangehensweise sind die Shadow Volumes, eingefiihrt 1977 von
Crow [9]. Hier werden zunéchst die Silhouettenkanten aller schattenwerfenden Objekte ermittelt.
Die Polygone, deren Normalen der Lichtquelle zugewandt sind, werden front-facing genannt, die
abgewandten back-facing Polygone. Die Kanten, die diese beiden Arten von Polygonen trennen
sind die Silhouettenkanten, also die Umrisse der schattenwerfenden Objekte aus Sicht des Lichts.
Sie werden nun, von der Lichtquelle weg, extrudiert und je nach Implementierung mit Abschluss-
kappen versehen, was einen geschlossenen Volumenkorper ergibt (siehe Abbildung 2.5). Alles
was sich in diesem Shadow Volume befindet, liegt im Schatten. Heidmanns Ansatz nutzte 1991
[16] den Stencil Buffer und ermoglichte so den Gebrauch von Shadow Volumes zur Schattendar-
stellung in Echtzeitanwendungen. Der Hauptvorteil gegeniiber Shadow Maps liegt in der Pixel-
genauigkeit, jedoch muss fiir die Berechnung zusitzliche Geometrie erzeugt werden. Die beiden
grundsitzlichen Verfahren konnen kombiniert werden, um effiziente hybride Renderalgorithmen
zu entwickeln (z.B. bei Chan und Durand [8]).

shadowed scene wireframe shadow volumes

Abbildung 2.5: Berechnete Shadow Volumes, hier in gelb dargestellt [68].

Echtzeitschatten miissen innerhalb der Zeit eines Framewechsels berechnet und angezeigt wer-
den. Bei einer fliissigen Framerate von 60 FPS stehen also etwa nur 17 Millisekunden pro Frame
zur Verfiigung. In dieser kurzen Zeitspanne ist es unmoglich, die Qualitét einer Beleuchtung zu
erreichen, die theoretisch unbegrenzt Zeit fiir das Rendering hat. Aufgrund dessen ist es iiblich,
Licht und Schatten fiir statische Objekte im Vorhinein hochqualitativ zu berechnen, in Texturen
zwischenzuspeichern und performant zur Laufzeit lediglich anzuzeigen. Dieser Vorgang der Vor-
berechnung wird Backen genannt. Um Licht auf ein 3D-Modell zu backen, muss es zunéchst ab-

2 STAND DER TECHNIK 2.3 Licht und Schatten

gewickelt werden um eine UV-Map zu erstellen. Das bedeutet, dass jedes Polygon eine bestimmte
Flache eines Texturraums zugewiesen bekommt. An der entsprechenden Stelle in der Textur des
Modells werden schlieBlich die Farb- oder Lichtinformationen fiir dieses Polygon gespeichert (sie-
he Abbildung 2.6). Der groB3e Vorteil der Vorberechnung ist jedoch gleichzeitig auch der grofite
Nachteil des Ansatzes, denn er verhindert Verdnderungen der Szene zur Laufzeit. Sobald sich Ob-
jekte, egal ob 3D-Modelle oder Lichter, verdndern, sind die zuvor berechneten Daten ungiiltig. Es
ist zwar moglich, die Texturen fiir verschiedene Situation zu backen und zwischen ihnen zu iiber-
blenden (z.B. eine Version fiir Tageslicht, eine fiir die Nacht), jedoch handelt es sich dabei nur um
eingeschrinkt nutzbare Sonderfille. Echtzeitschatten konnen auf diese Weise also nicht ginzlich

iberfliissig gemacht werden.

©

Abbildung 2.6: (a) Eine Szene in Wireframeansicht, (b) Abgewickelte UV-Map des Modells,
(c) Szene mit statischer Beleuchtung gerendert, (d) Gebackene Beleuchtungstextur des Modells.

2.3 Licht und Schatten 2 STAND DER TECHNIK

2.3.3 Schatten in Gameengines

In den verbreiteten Gameengines ist es iiblich, Echtzeitschatten und gebackene Schatten zu kombi-
nieren, um das beste Ergebnis zu bieten. Die Unity 5 Game Engine nutzt fiir ihre Echtzeitschatten
den Shadow Maps-Ansatz [55]. Fiir statische Objekte wird internes Backen inklusive globaler
lllumination angeboten. Um den Unterschied bei der Beleuchtung zwischen statischen und dyna-
mischen Objekten weniger sichtbar zu machen setzt Unity auf Light Probes. Diese Messpunkte
konnen an sinnvollen Positionen in der Szene verteilt werden und fangen dort beim Backen die
Lichteinstrahlung auf. Zur Laufzeit wird das Shading der dynamischen Objekte anhand der Po-
sition zu den Light Probes interpoliert. Dabei geht es jedoch nur um die Beleuchtung des sich
bewegenden Objekts selbst, der Schattenwurf auf statische Objekte wird dabei nicht beachtet. In
der Version 4.6 verwendete Unity Dual Lightmaps [54]. Dabei wird je nach Entfernung von der
Kamera zwischen einer Entfernungs- und einer Nihelightmap iiberblendet, die statischen und dy-
namischen Objekte werden je nach Entfernung anders behandelt. Sie werfen nah an der Kamera
immer Echtzeitschatten, sind sie weiter entfernt benutzen statische Objekte keine Echtzeitbeleuch-
tung mehr, die dynamischen hingegen schon, werfen jedoch keinerlei Schatten (siehe Abbildung
2.7). Eine simplere Moglichkeit boten die Single Lightmaps. Hier wurden gebackene Maps fiir sta-
tische und Echtzeitschatten fiir dynamische Objekte einfach gleichzeitig angezeigt. Die Deckkraft
der Echtzeitschatten musste manuell an die der Lightmaps angepasst werden [54].

Far Lightmap. no realtime lighting

on static objects anymore
Shadow Distance transition sormewhere here,
not really visible

Indirect lighting from the Near Lightmap

Realtime shadows cast by dvna objects

Realtime shadows and direct lighting on static objects,
indirect light comes from the Near Lightmap

Abbildung 2.7: Dual Lightmaps in Unity 4.6 [54].

Die Unreal Engine 4 bietet vier grundsitzliche Typen des Schattenwurfs/Lichttypen [59]. Sta-
tische Lichter haben keinerlei Einfluss auf dynamische Objekte sondern werden nur beim Backen
der Szene beachtet. Gerichtete stationdre Lichter oder Whole Scene Shadows sind vergleichbar mit
dem Dual Lightmap-Ansatz der Unity Engine. Auch hier werden dynamische Schatten abhédngig
von der Entfernung zur Kamera in statische tiberblendet. Stationdire Lichter werden beim Backen
von statischen Objekten mit einbezogen, werden aber zur Laufzeit auch bei der Beschattung dy-
namischer Objekte beachtet. Hier werden fiir jedes bewegte Objekt zwei Schatten berechnet, der
Schatten der statischen Geometrie auf das Objekt und der des Objekts auf die statische Geometrie.
Statische und dynamische Schatten werden schlieBlich verschmolzen und gleichzeitig angezeigt.

Bei dem letzten Typ handelt es sich um voll dynamische Lichter. Sie werfen Echtzeitschatten
auf alle Objekte, werden beim Backen nicht beachtet und sind somit die teuersten Lichter in der

10

2 STAND DER TECHNIK 2.4 Interaktion

(a) Harter Schatten (b) Weicher Schatten (c) Flachenschatten

Abbildung 2.8: Verschiedene Arten des Schattenwurfs.

Berechnung. Um Fldchenschatten bei beweglichen Objekten effizient anzuzeigen bietet Unreal
Ray Traced Distance Field Soft Shadows [58]. Bei Fldchenschatten ist die Hirte der Schattenkan-
ten abhédngig von der Entfernung zum schattenwerfenden Objekt. Im Gegensatz zu harten Schat-
ten, die gleichméBig scharfe Kanten haben und weichen Schatten, welche durchgingig weiche
Kante besitzen, sind Fldchenschatten nah am Objekt hart und werden auslaufend weicher (siehe
Abbildung 2.8). Dieser Schattenwurf ist am realistischsten, jedoch auch am aufwendigsten zu be-
rechnen. Unreal verwendet hierfiir eine Distance Field Representation der Szene [57]. In einem
Distance Field wird fiir jedes Objekt in jeden Punkt in einem festgelegten Raster die Entfernung
zur Oberfliche des Meshs gespeichert. Um den Flichenschatten zu berechnen, wird ein Strahl
von dem zu beschattenden Punkt in Richtung Lichtquelle durch das Distance Field geschossen.
Fiir sehr geringe zusitzliche Kosten kann nun mithilfe der kleinsten bekannten Entfernung zum
schattenwerfenden Objekt ein Kegel ermittelt werden, durch welchen die Hirte des Schattens fest-
gelegt wird.

2.4 Interaktion

Die Interaktion ist ein weites Forschungsgebiet in der AR. Hier gelten durch die anderen Vor-
aussetzungen und Moglichkeiten auch teils abgewandelte oder komplett neue Regeln. Man kann
die Interaktion in drei grofle Bereiche einteilen: die Navigation im AR- oder realen Raum, die
Manipulation von Objekten und die Kollaboration beziehungsweise gemeinsame Interaktion. Da
sich der mogliche Bewegungsraum in der im Zuge dieser Arbeit entwickelten AR-Anwendung
lediglich auf den Platz um ein einzelnes 3D-Modell herum beschrinkt, liegt kein Fokus auf der
Navigation im erweiterten Raum wie zum Beispiel bei Navigationsapps mit GPS-Unterstiitzung.
Die im Prototyp gebotenen Navigationsmoglichkeiten werden im Abschnitt der Konzeptionsphase
in 3.4.2 Navigationsmdoglichkeiten erlautert.

2.4.1 Manipulation

Ein spezielles und michtiges Interaktionskonzept innerhalb der AR sind die sogenannten Tan-
gibles. Dabei handelt es sich um reale Objekte, die vom Nutzer physisch beriihrt und manipu-
liert werden konnen. Diese Verdnderungen werden auf verschiedenste Arten, wie durch Kameras,
Tracking und weitere Sensoren, erkannt und auf die digitalen Objekte iibertragen (sieche Abbil-
dung 2.9a). Der Begriff der TUIs, der tangible user interfaces, wurde hierfiir schon 1997 von Ishii
und Ullmer eingefiihrt [19]. Der groBe Vorteil dieses Ansatzes liegt in dem leichten Verstindnis
durch den Nutzer. Wenn man die physischen Objekte mit dhnlichen Eigenschaften versieht, wie
sie die digitale Reprisentation haben soll, sprich gleiche Form, gleiches Gewicht, gleiche Oberfli-
chenstruktur, verstehen die User sofort die Verkniipfung zwischen den virtuellen und realen Re-
prasentationen und erkennen die moglichen Interaktionen. Die erlaubten Manipulationen werden

11

2.4 Interaktion 2 STAND DER TECHNIK

zusitzlich durch die sogenannten Affordances der Objekte schnell erkannt. Dieser Begriff wur-
de von Don Norman, einem der bekanntesten Interaktionsdesigner, in seinem Buch The Design
of Everyday Things aus dem Jahr 1988 geprigt und bedeutet, dass die moglichen Interaktionen
alleine durch die physischen Eigenschaften eines Gegenstands wahrgenommen werden konnen,
wie zum Beispiel das Herunterdriicken einer Tiirklinke oder das Rotieren eines Drehknopfes [36].
Durch die Verwendung von TUIs kann diese hilfreiche Eigenschaft auch in der AR genutzt wer-
den. Wird nun der TUI-Ansatz mit den durch AR gebotenen zusitzlichen digitalen Informationen
verschmolzen, entsteht die sogenannte Tangible Augmented Reality.

Abbildung 2.9: (a) TUI nach Ishii und Ullmer [19], (b) Durch Gesten steuerbares AR-Schach [12].

Eine der natiirlichsten Moglichkeit zur Interaktion ist die klassische Handgestenerkennung
[28]. So wurde 2001 zum Beispiel ein AR-Schachspiel présentiert, das sich mit einem speziell
markierten Handschuh steuern lie3 [12] (siehe Abbildung 2.9b). Die Steuerung war sehr intuitiv
und bereitete keine grolen Probleme. Damals war die bendtigte Hardware zur Erkennung der Ein-
gaben noch grof3 und sperrig, es mussten spezielle Trackingmarker und stereoskopische oder eine
Vielzahl von Kameras verwendet werden. Durch aktuelle Entwicklungen wie das kleine mobile
Gestenerkennungssystem Leap Motion [33], erweitern sich die Einsatzmoglichkeiten der Gesten-
steuerung jedoch stetig und sie wird zunehmend auch fiir tragbare AR-Anwendungen attraktiver.

Zusitzlich konnen bei AR-Anwendungen auch alle weiteren iiblichen Eingabemdoglichkeiten
eingesetzt werden. So zum Beispiel eine Sprachsteuerung iiber einzelne Befehle oder je nach
anzeigendem Endgerit Neigungs- und Beschleunigungssensoren. Hat der Nutzer die Hénde frei,
indem er etwa ein AR-Headset trigt, konnen auch die Korpergestensteuerung (zum Beispiel mit
der Microsoft Kinect) oder klassische Eingabegerite wie Spielecontroller (Gamepad, Joystick,
Lenkrad) genutzt werden.

Da das in dieser Arbeit entwickelte AR-System jedoch sehr mobil und ohne zusitzliche
Einrichtungs- und Aufbauarbeit von externen Sensoren einsetzbar sein sollte, wird in dem Pro-
totyp die Touchsteuerung iiber das Display des Endgerits verwendet. Durch die Erfahrungen mit
Smartphones und Tablets sind die Nutzer mit den Grundziigen der Interaktion bereits vertraut.

2.4.2 Gemeinsame Interaktion

Dieser Abschnitt konzentriert sich auf die gemeinsame Interaktion mehrerer Benutzer in einer
AR-Welt. Es gab bereits frith wissenschaftliche Arbeiten, die sich mit der Interaktion oder Zu-
sammenarbeit im virtuellen Raum beschiéftigten (z.B. Virfual Notepad von Poupyrev et al., 1998
[42]; Studierstube von Schmalstieg et al., 2000 [48] oder Boom Chameleon von Tsang, 2002 [53]).
Diese waren jedoch auch aufgrund der damaligen technischen Entwicklung und Umsetzung eher
als frithe Prototypen und Machbarkeitsstudien zu verstehen und wenig mobil und zugénglich.

12

2 STAND DER TECHNIK 2.4 Interaktion

Keines der vorgestellten AR SDKs bietet den bereits eingebauten Mehrbenutzerbetrieb fiir In-
teraktionen. Diese Netzwerkfunktionen miissen per SDK oder API manuell implementiert werden.
Die Layar App Stiktu ermoglichte es Benutzern in der realen Welt digitale Grafiken anzubringen
und diese mit anderen Nutzern zu teilen, 2013 wurde ihr Betrieb eingestellt [50]. Second Surface
von Kasahara et al. [23] bietet eine dhnliche Funktion, zusétzlich konnen hier jedoch mehrere
User zum selben Zeitpunkt zusammen an einem digitalen Bild arbeiten. Dieses Bild wird virtuell
an reale Oberflachen geheftet, ohne vordefinierte Marker ausdrucken zu miissen. Die Anwendung
erlaubt jedoch keinen Import und keine Manipulation von dreidimensionalen Modellen sondern
beschrinkt sich lediglich auf zweidimensionale Grafiken. Die Implementierung verwendete das
Vuforia SDK und eine Client-Server-Architektur. Auf dem Client generierter Inhalt wurde iiber
Netzwerk an den Server geschickt, welcher die Daten verwaltete, abspeicherte und an andere Cli-
ents weiterschickte. Scrawl, eine App des AR Anbieters String, bot dhnliche Malfunktionen im
dreidimensionalen Raum, jedoch nur mit vordefinierten Markern und ohne geteilte Arbeitsflache
[32].

AR-Applikationen, bei denen der Benutzer dreidimensionale Modelle dynamisch laden und
manipulieren und dieses zusitzlich in Echtzeit mit weiteren Nutzern teilen kann existieren bisher
nicht.

13

2.4 Interaktion 2 STAND DER TECHNIK

14

3 KONZEPTION DES PROTOTYPS

3 Konzeption des Prototyps

In diesem Abschnitt wird der Prozess der Planung dargestellt. Es wird beschrieben, welche Uber-
legungen und Entscheidungen im Vorhinein getétigt wurden und welche Funktionen der fertige
Prototyp bieten sollte.

3.1 Technische Grundlagen

Die Auswahl der Endgerite und damit des Betriebssystems hat groen Einfluss auf die Wahl der
verfiigbaren Entwicklungssoftware. Die Plattform entscheidet zudem iiber den Ablauf der Ent-
wicklung, die Verfiigbarkeit und die unkomplizierte Anwendbarkeit des Prototyps.

3.1.1 Endgerite und Plattform

Eine wichtige Anforderung an den Prototypen war die Mobilitit. Er sollte ohne groBen Aufwand
transportabel sein und keine spezielle oder teure zusitzliche Hardware benétigen. Fiir AR nach
dem optischen Ansatz ist das Vorhandensein einer Kamera zum Einfangen der Umgebung zwin-
gend erforderlich. Aufgrund dessen fiel die Entscheidung fiir eine Umsetzung als Applikation fiir
Smartphone und Tablet. Moderne Gerite sind auch in einer giinstigen Preisklasse schon ausrei-
chend leistungsstark, haben meist eine Kamera und eine Vielzahl weiterer Sensoren bereits einge-
baut und sind weit verbreitet. Auf diese Weise wird es Nutzern ermdglicht, den Prototyp schnell zu
erfahren oder auch ldngerfristig zu verwenden ohne sich eigens fiir diesen Zweck neue Hardware
zulegen zu miissen.

Die am weitest verbreiteten Betriebssysteme auf diesen Geréten sind Android (82,8% Markt-
anteil bei Smartphones im zweiten Quartal 2015), iOS (13,9%) und Windows Phone (2,6%) [17].
Die starke Verbreitung, Offenheit des Systems und Verfiigbarkeit von Geriten in allen Preis- und
Leistungsklassen fiihrte zu der Entscheidung, vorrangig das Android Betriebssystem zu bedienen.

Mit fortschreitender Entwicklung und Verbreitung weiterer mobiler Endgerite, dhnlich der
mittlerweile eingestellten Google Glass [13] oder der Microsoft HoloLens, einer speziellen
Augmented-Reality-Brille [30], ist prinzipiell auch die Verwendung auf weiteren Plattformen und
Geriten denkbar.

3.1.2 Entwicklungsumgebung

Um fiir Android Applikationen zu realisieren gibt es mehrere Moglichkeiten. Apps konnen mit-
hilfe des Android-SDKs programmiert werden, einem Software Development Kit mit zusitzlichen
hilfreichen Tools, wie der Android Debug Bridge ADB zum Ansehen des Systemlogs des End-
gerits oder einem Emulator. Die verwendete Programmiersprache ist Java, weshalb aulerdem
das Java Development Kit (JDK) benotigt wird. Als Entwicklungsumgebung stehen verschiede-
ne Programme zur Auswahl — Eclipse, Intelli] IDEA, NetBeans oder seit 2015 das von Google
entwickelte Android Studio. Diese unterscheiden sich nur unwesentlich im Leistungsumfang und
konnen nach personlicher Priaferenz gewéhlt werden.

Eine weitere Herangehensweise ist die Verwendung einer noch hoheren Entwicklungsumge-
bung, die dem Programmierer viele aufwendige Schritte abnimmt und damit die Arbeit erleichtert.
Gerade fiir das schnelle Prototyping ist dies das Mittel der Wahl. Es konnen schneller lauffihige
Apps erstellt werden und der Fokus liegt an vielen Stellen nicht mehr auf der manuellen grund-
legenden Umsetzung sondern auf der Implementierung der erweiterten Funktionen. Bei solchen
Umgebungen handelt es sich hiufig um Gameengines, die urspriinglich fiir die Entwicklung und
Anzeige von Computerspielen vorgesehen waren. Aktuelle Versionen erlauben es aber heutzuta-
ge, die Anwendungen ohne grofle Anpassungen fiir verschiedenste Plattformen zu kompilieren,

15

3.2 Tracking 3 KONZEPTION DES PROTOTYPS

darunter auch die gro3en mobilen Betriebssysteme. Zudem sind sie nicht auf die Spieleentwick-
lung beschrankt sondern ermoglichen das Erstellen vollwertiger Programme jeden Anwendungs-
bereichs. Die bekanntesten Vertreter dieses Gebiets sind wohl die Unreal Engine und die Unity
Game Engine. Beide Engines basieren auf WYSIWYG-Editoren (,, what you see is what you get*),
in denen Objekte in einer zwei- oder dreidimensionalen Welt platziert und manipuliert werden
konnen. Diese werden durch das Hinzufiigen vorgefertigter Bausteine oder das Schreiben eige-
ner Skripte mit Funktionen versehen. Unreal 1dsst dem Anwender dabei die Wahl zwischen Code
in C++ oder einer grafischen Programmierung mithilfe eines Node-Editors. In Unity werden die
Skripte in C# oder JavaScript geschrieben.

Beide Engines dhneln sich in Programmoberfliche und Konzepten sehr stark und sind im
Funktionsumfang vergleichbar (siehe Abbildung 3.1). Beide konnen zum Beispiel mit Modellen,
Shadern und Plugins aus dem Unreal Marketplace beziechungsweise dem Unity Asset Store erwei-
tert werden. Als Stérke der Unreal Engine wird im Allgemeinen die grafisch hohe Qualitit und
Performanz gesehen, die Unity Engine punktet durch erhohte Einsteigerfreundlichkeit. Aufgrund
der Verfiigbarkeit der gewéhlten AR-Library sowie bereits gewonnener Erfahrung bei der Ent-
wicklung mit dieser Engine, fiel die Wahl fiir die Umsetzung des Prototyps auf die Unity Game
Engine.

Unity Editor Unreal Editor

\VIEWPORT

*
DE
JES
e
!7 £
A

BROWSER

IMEENEaN

Abbildung 3.1: Vergleich der Programmoberflichen von Unity und Unreal [60].

3.2 Tracking

Die Entscheidung fiir eine AR-Library sowie die Art des Trackings ist von mehreren Faktoren
abhingig. Dazu gehoren die Zielplattform, die Einbindung in das Softwarepaket der Entwick-
lung sowie die Anforderungen an Vorbereitungsaufwand, Robustheit und die Anwendungsfille
des Trackings. Auch eine ausfiihrliche Dokumentation der Library und eine aktive Internetcom-
munity kann ein ausschlaggebender Faktor sein.

3.2.1 Augmented Reality Library

Wie in Kapitel 2.1 Augmented Reality vorgestellt, gibt es fiir die Entwicklung von AR-Apps ver-
schiedenste Anwendungen und Libraries. Vorgefertigte Editoren, wie der Metaio Creator, die es
auch dem Laien erlauben in wenigen Schritten Objekte auf optischen Trackern anzuzeigen sind
durch ihre Eingeschrinktheit in Erweiterbarkeit und Funktionen fiir diesen Prototyp nicht geeig-
net. Das Paket muss eine direkte Programmierschnittstelle (API) bieten, die zudem in einer Pro-
grammiersprache verfiigbar ist, welche von der Entwicklungsumgebung verstanden wird.

Das Layar SDK ist kostenpflichtig und nur in einer 30-tdgigen Testversion frei verfiigbar. Aus
diesem Grund ist es fiir diese Arbeit nicht nutzbar. Metaio hat wie bereits erwihnt den Betrieb

16

3 KONZEPTION DES PROTOTYPS 3.2 Tracking

eingestellt, wodurch auch dieses SDK aus der Auswahl fillt. Wikitude besitzt durch ein Plugin
eine direkte Anbindung an Unity, die freie Version zeigt jedoch ein auffélliges und sehr storendes
Wasserzeichen auf der kompletten Kameraansicht an. Die Wahl der Augmented Reality Library
fiel deshalb auf das Vuforia Framework. Die Starter-Lizenz bietet vollen Zugriff auf die Vifo-
ria-Plattform, ein Wasserzeichen wird lediglich in der unteren linken Ecke angezeigt und beein-
flusst die Erfahrung nicht negativ. Es gibt eine grole Auswahl an Tracking- und Markerarten, das
Tracking ist zudem sehr zuverlédssig. Das SDK gibt es fiir direkt fiir Android (Java/C++) und iOS
(C++), auBerdem als Unity-Plugin (C#). Die ausfiihrliche Onlinedokumentation sowie eine aktive
Community im eigenen Forum sind weitere Griinde, die fiir dieses Framework sprachen und zu
dessen Wahl fiihrten.

3.2.2 Art des Trackings

Vuforia bietet sieben Arten des Trackings mit verschiedensten Markern [64]. Dabei handelt es sich
um die folgenden:

o Image Targets: die klassischen flachen 2D-Marker, verwendet zum Beispiel in Printmedien.
Diese konnen selbst definiert werden. Am Besten eignen sich Grafiken mit einer ausreichen-
den und markanten Verteilung an sogenannten Features, automatisch erkannten Tracking-
punkten, die fiir robuste Bildverfolgung unverzichtbar sind.

Multi-Targets: eine Kombination aus mehreren Image Targets, welche zu einander in be-
stimmten rdumlichen Relationen stehen. So konnen zum Beispiel die verschiedenen Seiten
einer Verpackungsschachtel gemeinsam als Box definiert sein.

Cylinder Targets: hierbei handelt es sich um Image Targets welche jedoch nicht planar auf
einer ebenen Fliche liegen, sondern gebogen die Form eines Zylinders ergeben. Das ist
niitzlich, um Bilder auf runden Objekten wie Flaschen oder Dosen zu tracken.

Frame Markers: dies sind vordefinierte Rahmen, vergleichbar eines QR- oder Barcodes,
welche um jedes beliebige Bild gelegt werden konnen. Sie kodieren eine von 512 Zahlen
und konnen iiber diese zugeordnet werden. Durch die geringe Komplexitédt des optischen
Codes konnen die Tracker relativ klein sein und es kdnnen mehrere gleichzeitig erkannt und
verfolgt werden.

Text Recognition: erkennt Worter aus einem festgelegten Worterbuch. Es umfasst rund
100 000 englische Worter.

Object Targets: Vuforia erlaubt zudem das Tracking von realen Objekten. Dafiir muss das
Objekt zunédchst mit einer eigens hierfiir vorgesehenen App gescannt werden, indem es von
allen Seiten aufgenommen wird. Durch die Verteilung der Features kann eine 3D-Hiille
berechnet werden, die sich der tatsdchlichen Form annihert. Diese Hiille kann schlieflich
fiir das Tracking des Objekts genutzt werden (siehe Abbildung 3.2).

Points 239 le Coverage

Abbildung 3.2: Mit dem Object Scanner erzeugte Trackinghiille eines realen Modells [67].

17

3.3 Licht und Schatten 3 KONZEPTION DES PROTOTYPS

o Smart Terrain: eine neuartige Technologie, welche es zur Laufzeit ermoglicht, ein 3D-Mesh
der physischen Umgebung zu erstellen und dieses in Anwendungen zu nutzen (sieche Abbil-
dung 3.3). Dadurch lassen sich viele neue Interaktionsweisen zwischen der erweiterten und
der echten Realitdt umsetzen. So kann zum Beispiel durch die Positionierung und Verschie-
bung von realen Objekten Einfluss auf eine virtuelle Spielwelt genommen werden.

—TFAPICE TO MOVE PENGUIN _-

Abbildung 3.3: Einbindung der realen Umgebung in die Spielwelt mithilfe von Smart Ter-
rain [65].

Vuforia arbeitet beim Tracking ohne Unterstiitzung des Gyroskops des Endgerits, es handelt
sich also um klassisches optisches Tracking. Fiir den Prototyp wurde das Tracking mit Image Tar-
gets gewiahlt, da es den Anforderungen am Besten entspricht. Virtuelle Objekte sollen auf planen
Oberflichen angezeigt werden, wie einem Tisch oder dem Boden. Als Target werden selbst de-
finierte austauschbare Grafiken verwendet. Die Interaktion findet auf dem Display des Endgerits
statt, die Erfassung von realen Objekten (Object Targets) oder der riumlichen Umgebung (Smart
Terrain) ist somit nicht notwendig.

3.3 Licht und Schatten

Die Beleuchtung, insbesondere die Schattierung, ist ein wichtiger Teil dieser Arbeit. Um Erkennt-
nisse dariiber zu gewinnen, welche Art der Beleuchtung, gebacken oder dynamisch, fiir welchen
Anwendungsfall besonders geeignet ist, miissen beide in dem Prototypen implementiert sein. Es
soll nicht das Ziel sein, die tatsdchliche reale Lichtsituation und Umgebung so gut wie moglich
einzufangen und die Objekte so realistisch wie moglich darzustellen. Hierfiir sind nach aktuel-
lem Stand der Technik entweder eine Vorkalibrierung durch Shading-Probes oder das Erstellen
von HDRs erforderlich, zusitzlich leistungsstirkere Hardware wie vollwertige Computer mit Gra-
fikkarte (siehe dazu 2.3.1 Beleuchtung in Augmented Reality). Dieser Prototyp soll jedoch mobil
sein und ohne umstindliche Vorarbeit verwendet werden kénnen. Der Schwerpunkt liegt deshalb
auf der Interaktion, den Netzwerkfunktionen und eben der optimalen Art der Beleuchtung in den
jeweiligen Anwendungsfillen.

Von den zu untersuchenden dreidimensionalen Modellen werden je drei verschiedene Versio-
nen angefertigt: komplett mit vorgebackenen Schatten, mit rein dynamischen Schatten und mit
der Kombination beider Ansitze. Die statische Version wird in einer 3D-Software ausgeleuchtet
und gebacken, die dynamische Version nutzt die Lichter der Unity Engine. Beides wird schlieBSlich
zusitzlich kombiniert.

18

3 KONZEPTION DES PROTOTYPS 3.4 Interaktion

3.4 Interaktion

Ein weiterer Schwerpunkt der Entwicklung ist die Interaktion der Nutzer mit der Anwendung und
auch untereinander. In diesem Abschnitt wird beschrieben, auf welche Weise der Benutzer mit der
App interagieren kann und welche Funktionen sie ihm bieten soll.

Grundsitzlich soll es dem Nutzer ermoglicht werden, durch Touchbedienung Manipulatio-
nen an dynamisch austausch- und ladbaren Modellen vorzunehmen. Durch Verwendung des AR-
Ansatzes werden diese Modelle an einer bestimmten Stelle, etwa einem ausgedruckten Marker, in
der realen Welt angezeigt. Aufgrund der Betrachtbarkeit von allen Seiten durch das Endgerit als
,JFenster” soll die Erfahrbarkeit des Objekts im Vergleich zu einer einfachen per Eingaben dreh-
baren Ansicht verbessert werden. Zusétzlich kénnen die Manipulationen an beliebig viele weitere
Nutzer iiber Netzwerk gestreamt werden, sodass auch sie den Vorgédngen aus ihrer eigenen Sicht
ungestort folgen konnen. Damit sind zum Beispiel attraktive Produktprédsentationen auf Messen
oder bei Kunden vorstellbar.

3.4.1 Benutzerrollen

Das entwickelte Konzept sieht vor, die Nutzer in zwei Kategorien mit unterschiedlichen Rechten
und Funktionen einzuteilen:

e Presenter oder Prdisentator
e Spectator oder Zuschauer

Dem Namen entsprechend, fiihrt der Presenter durch die Prisentation. Er hat die Rolle des Lei-
ters inne und hat somit die meisten Rechte. Er wahlt das gewiinschte Modell aus einer lokalen
Datenbank auf seinem Gerit aus und fiithrt die Manipulationen durch. Die Spectators kdnnen sich
mit einem eigenen Endgerit in die Prisentation einloggen. Ab diesem Zeitpunkt werden jegliche
Anderungen auf Seite des Presenters, wie das Laden und Bewegen der Modelle, an den Spectator
ibertragen und auf seiner Seite angezeigt. Dieser folgt der Prisentation aus seiner eigenen ge-
wiinschten Sicht und bleibt durch die aktive Einbindung aufmerksam. Bei einer Beschreibung als
Client-Server-Architektur entspricht der Presenter dem Server, der den Zustand der Welt kontrol-
liert und verwaltet, der Spectator ist ein Client.

3.4.2 Navigationsmoglichkeiten

Die Bewegung in der virtuellen Welt geschieht bei AR normalerweise durch die Verdnderung der
Positionen des Trackers und der Kamera zueinander. Der ausgedruckte 2D-Tracker gilt als Fix-
punkt der digitalen Szene. Er bleibt auf einer planen Ebene liegen, kann aber in diesem Fall auch
manuell physisch bewegt werden. Das gesamte Koordinatensystem orientiert sich an seiner Posi-
tion. Wichtig ist auch, dass die Perspektive des Presenters und der Spectators komplett entkoppelt
sind, jeder soll die Szene aus seiner priferierten und anpassbaren Ansicht erleben. Mdéchte der
Nutzer seine Sicht auf das Modell @ndern hat er folgende Moglichkeiten:

e Ansicht verschieben: Um die Szene aus einer anderen Perspektive aber aus der gleichen
Richtung zu betrachten hat der Nutzer zwei Moglichkeiten. Er kann das mobile Endgerit,
durch dessen Kamera er die Szene beobachtet nach rechts oder links, nach oben oder un-
ten bewegen. Da das Modell an den Tracker gebunden ist, verdndert sich seine Position auf
dem Bildschirm entsprechend. Fiir die horizontale Bewegung gibt es aulerdem die Heran-
gehensweise, den ausgedruckten Tracker selbst nach rechts oder links zu verschieben. Der
Effekt ist der selbe wie bei der Bewegung der Kamera.

19

3.4 Interaktion 3 KONZEPTION DES PROTOTYPS

e Ansicht zoomen: Um das Modell aus der Nihe oder Ferne zu betrachten sollte man die
Entfernung der Kamera zum Tracker verdndern. Bewegt man sich mit ihr auf die Ebene zu,
wird die Ansicht gleichermaB3en vergroffert, um mehr Details wahrnehmen zu konnen. Tritt
man etwas zuriick, erhilt man einen Uberblick iiber die virtuelle Welt. Das Verschieben des
Trackers ist hier nicht zu empfehlen, da er dafiir angehoben werden miisste, was das Biegen
und den eventuellen Verlust des Trackings zufolge hitte.

o Ansicht rotieren: Um die Richtung, aus der der Nutzer die Szene betrachtet zu dndern, gibt
es wiederum zwei Ansédtze. Zunichst kann man sich mit dem Endgerit in der Hand um den
Tracker herumbewegen, die Sicht auf das 3D-Modell passt sich gleichermalen an. Dies ist
jedoch nicht immer praktikabel, da es hiufig nicht die Moglichkeit gibt, sich um 360° um
den 2D-Tracker herumzubewegen, zum Beispiel an einem Sitzplatz an einem Tisch. Haufig
ist es einfacher, per Hand den echten physischen Tracker einfach zu drehen und damit seine
Sicht auf die Welt anzupassen.

Die Umsetzung dieser Interaktionsmdoglichkeiten ist direkt in der AR-Grundfunktionalitiit von
Vuforia enthalten. Sie miissen deshalb nicht manuell implementiert werden.

3.4.3 Manipulationsmoglichkeiten

Der Benutzer soll die Moglichkeit haben, einzelne Objekte des Modells zu Manipulieren. Die
Eingabe erfolgt durch Touch-Gesten auf dem Display des Endgerits. Die grundlegende Art und
der zuléssige Bereich der erlaubten Manipulation werden schon bei der Erstellung des 3D-Modells
definiert und beim Laden umgesetzt. Diese Bewegungen sind auf Seiten des Presenters vorgesehen
und werden iiber Netzwerk an die eingeloggten Spectators tibertragen. Der Prototyp soll die drei
Grundtransformationen erlauben:

e Translation: Verschiebung auf vordefinierten Achsen zwischen festgelegten Start- und End-
punkten. Anwendungsbeispiel Schieberegler.

e Rotation: Drehung um vordefinierte Achsen um einen festgelegten Punkt. Anwendungsbei-
spiel Lautstirkedrehregler.

e Skalierung: Vergroflerung und Verkleinerung auf vordefinierten Achsen. Anwendungsbei-
spiel elastisches Material.

Auch die beliebige Kombination der Grundmanipulationen ist erlaubt. Zusitzlich soll das Modell
in seiner Gesamtheit auf jedem Endgerit unabhiingig skalierbar sein. Der Grund hierfiir ist die
individuelle Anpassung an die uneinheitlichen Groen der Displays unterschiedlichster Hardware.
Abseits der Grundtransformationen soll es moglich sein, das Material eines Objekts per Touch zu
dndern.

3.4.4 Dynamisches Laden und Verteilen der Modelle

Fiir die vielseitige und léngerfristige Verwendung ist es erforderlich, die Modelle austauschen zu
konnen. Nur bestimmte dreidimensionale Modelle bei der Entwicklung ,.hardcoded* fest einzu-
bauen und diese nicht verdnderbar zu machen ist keine sinnvolle Option, die Anwendungsfille
des Prototyps wiren dadurch sehr eingeschréinkt. Es soll deshalb die Moglichkeit geben, die An-
wendung stets mit neuen Inhalten zu versorgen und diese dynamisch zu laden. Hierfiir sollen die
Modelle zur Laufzeit aus Dateien auf dem nichtfliichtigen Datenspeicher des Endgerits ausgele-
sen werden. Die Auswahl des Modells geschieht iiber einen in die App integrierten Objektbrowser.
Da die erlaubten Manipulationen bereits in der Modelldatei gespeichert werden sollen, muss der
Ladevorgang dynamisch sein. Das Objekt wird dabei analysiert und die benétigten Vorginge fiir
die definierten Transformationen ausgefiihrt.

20

3 KONZEPTION DES PROTOTYPS 3.4 Interaktion

Zudem ist es nicht ausreichend, das Modell nur auf dem lokalen Gerit zu Laden. Auch die
angemeldeten Clients miissen im Besitz der Objektdatei sein, um diese anzeigen zu kdnnen. Da es
weiteren Spectators moglich sein soll an einer Prisentation teilzunehmen, ohne im Vorhinein eine
Datei manuell auf den persistenten Speicher ihres Gerits kopieren zu miissen, soll die Verteilung
der Datei automatisch erfolgen. Benutzer, die sich bei dem Server registrieren, sollen das dort
geladene Modell bei Nichtbesitz iiber die Netzwerkverbindung transferiert bekommen. Die Details
zur genauen Umsetzung des Ladens und Verteilens werden in den Kapiteln 4.4.3 Dynamisches
Laden und 4.4.4 Netzwerkkommunikation erldutert.

21

3.4 Interaktion 3 KONZEPTION DES PROTOTYPS

22

4 IMPLEMENTIERUNG DES PROTOTYPS

4 Implementierung des Prototyps

Dieses Kapitel beschreibt die technischen und gestalterischen Details der Umsetzung. Welche
Hard- und Software wurde benutzt? Wie wurden einzelne Aspekte konkret umgesetzt? Welche
Probleme ergaben sich im Laufe der Entwicklung und wie wurden sie gelost?

4.1 Entwicklungsumgebung

In diesem Teil wird die Hard- und Software beschrieben, die fiir die Umsetzung verwendet wurde.
Der Prototyp wurde auf zwei verschiedenen Desktop-PCs mit folgenden Spezifikationen entwi-
ckelt:

e PC I:Intel Core 17-6700K 4.00GHz, 16GB RAM, Nvidia GeForce GTX 970, Windows 8.1
Pro 64 Bit

e PC 2: Intel Core 17-4790K 4.00GHz, 32GB RAM, 2x Nvidia GeForce GTX 980 Ti, Win-
dows 7 Pro 64 Bit

Die Entwicklungssoftware wurde auf beiden Geriten auf dem selben Stand gehalten. Verwendet
wurde Unity in der Version 5.3.1p3 Personal 32 Bit inklusive MonoDevelop 5.9.6 als Codeeditor.
Bei dem benutzten Vuforia-SDK handelte es sich um die Version 5.0.10. Es gab bereits zu An-
fang der Umsetzung schon aktuellere Versionen beider einzelner Softwarepakete, jedoch war die
garantierte Kompatibilitdt nur bei den verwendeten gegeben. Aufgrund dessen wurden diese Ver-
sionen benutzt und im Laufe des Projekts auch nicht aktualisiert. Zur Synchronisation der Daten
auf beiden Entwicklungs-PCs wurde ein GitHub-Repository eingerichtet und der Stand mit dem
GitHub Desktop-Client abgeglichen.

Als mobile Hardware wurden drei Android-Endgerite mit Touchbedienung verwendet. Dabei
handelte es sich um ein Smartphone und zwei baugleiche Tablets mit den folgenden Spezifikatio-
nen:

o Smartphone: Google Nexus 5 LG D821, Qualcomm Snapdragon S800 2.26GHz, 2GB
RAM, Displaydiagonale 4.95 Zoll bei 1920x1080 Pixeln, Android-Version 6.0.1

o Tablet: Nvidia SHIELD Tablet K1, Nvidia Tegra K1 Grafikprozessor, ARM Cortex Al5
CPU 2.2GHz, 2GB RAM, Displaydiagonale 8 Zoll bei 1920x1200 Pixeln, Android-Version
6.0

4.2 Erstellung der 3D-Inhalte

Neben der Programmierung der Anwendung war die Erstellung von geeigneten 3D-Modellen ein
weiterer Schwerpunkt. Hier wird beschrieben, wie diese entstanden, wie die Interaktionsméglich-
keiten direkt integriert wurden, welche Typen von Modellen benétigt wurden und wie der Export
in die Unity Engine geschah.

4.2.1 Software

Als 3D-Software wurde Maxon Cinema 4D verwendet. Hierbei handelt es sich um ein vielseitiges
Werkzeug fiir Modellierung, Animation und Rendering. Die benutzten Versionen waren R15.064
64 Bit (sieche Abbildung 4.1) und R17.048 64 Bit. Zwar lassen sich mit dem enthaltenen Advanced
Renderer schon hochqualitative Ergebnisse erzielen, performanter und leistungsfihiger sind al-
lerdings externe Renderengines. Fiir das Backen der statischen Beleuchtungsmaps wurde deshalb
der GPU-Renderer otoy OctaneRender v3 genutzt. Die Integration in Cinema 4D ermdglichte das
OctaneRender for Cinema 4D-Plugin.

23

4.2 Erstellung der 3D-Inhalte 4 IMPLEMENTIERUNG DES PROTOTYPS

Abbildung 4.1: Die Programmoberfliche von Maxon Cinema 4D R15.

4.2.2 Objekthierarchie

Um den Austausch von Modellen in der Anwendung auch nach Abschluss der Entwicklung zu er-
lauben, war es notig, die Objekte dynamisch zu Laden. Die erlaubten Transformationen durch den
Presenter sind deshalb bereits in der Modelldatei enthalten. Wahrend des Ladevorgangs wird die
Objekthierarchie zur Laufzeit analysiert und anhand ihrer werden Manipulationen initialisiert und
so ermdglicht. Neben der Art der Transformation wird auch der erlaubte Umfang auf diese Weise
definiert. Im Folgenden werden die Anspriiche an die Objekthierarchie fiir einen reibungslosen Im-
port der Manipulationen erldutert, der technische Ablauf des Ladevorgangs in der Software selbst
wird in 4.4.3 Dynamisches Laden beschrieben. Grundsitzlich muss das Objekt, welches manipu-
lierbar sein soll, mindestens ein Unterobjekt enthalten. Am geeignetsten ist hierfiir ein Nullobjekt
das keine Geometrie besitzt sondern lediglich durch Koordinaten und Name definiert ist. Uber
Schliisselworter in dessen Namen wird dann zwischen den verschiedenen Typen von Funktionen
unterschieden:

o Translation: Enthilt der Name des Unterobjekts das Schliisselwort ,, Translation“ ermog-
licht es das Verschieben des Oberobjekts per Wischgeste mit einem Finger. Uber die Po-
sition des Objekts wird der erlaubte Bewegungsbereich definiert. Dabei gibt es zwei unter-
schiedliche Ausfiithrungen: die Definition {iber ein einzelnes sowie iiber zwei Unterobjekte
(siehe Abbildung 4.2). Wird nur ein Objekt verwendet, darf der Presenter das Oberobjekt
spater zwischen der aktuellen Startposition und der Position des Unterobjekts in gerader Li-
nie hin- und herbewegen. Im konkreten Fall auf Abbildung 4.2 ldsst sich Objekt 2 zwischen
seiner eigenen und der Position des Objekts Translation verschieben. Bei zwei Unterobjek-
ten ist diese Bewegungslinie zwischen den Positionen ebendieser beiden definiert. Objekt 1
kann zwischen Translation 1 und Translation 2 entlang der Z-Achse bewegt werden. Allge-
mein ist die Bewegung zudem nicht nur entlang einer einzelnen Achse moglich, es handelt
sich also nicht nur um eine Anderung beispielsweise der Z-Position. Durch die Definiti-
on der Bewegungsendpunkte iiber die Objektpositionen lésst sich die Linie beliebig in den
dreidimensionalen Raum legen und ist immer relativ zum lokalen Koordinatensystem des
Oberobjekts. Bei einer Skalierung des gesamten Modells passen sich die Endpunkte infol-
gedessen korrekt an.

24

4 IMPLEMENTIERUNG DES PROTOTYPS 4.2 Erstellung der 3D-Inhalte

Objekt 2

Translation

Translation 2

Translation 1 Ob_]ekt 1

@ Ob;
LO Tra
©C

1_0,
10 1

Abbildung 4.2: Die benétigte Objekthierarchie fiir die Translation in zwei Ausfithrungen.

o Rotation: Durch das Schliisselwort ,, Rotation* im Namen des Unterobjekts wird die Rotati-
on des Oberobjekts durch Wischgeste mit einem Finger aktiviert. Hierbei wird die Position
des Unterobjekts als Drehpunkt der Rotation definiert. Durch das Hinzufiigen des Achsen-
namens im Objektnamen wird die Drehachse festgelegt. In Abbildung 4.3 lisst sich Objekt
1 um die Y-Achse drehen, der Drehpunkt befindet sich an der lokalen Position von Rotation

Y. Zum Erméglichen der Drehung um alle Achsen miisste Rotation Y lediglich in Rotation
X Y Z umbenannt werden.

Objekt 1

Rotation Y

Abbildung 4.3: Die benétigte Objekthierarchie fiir die Rotation.

25

4.2 Erstellung der 3D-Inhalte 4 IMPLEMENTIERUNG DES PROTOTYPS

o Skalierung: Enthilt der Name des Unterobjekts das Schliisselwort ,,Scale“ ldsst sich das
Oberobjekt per Pinch-To-Zoom-Geste mit zwei Fingern skalieren. Die Position des Un-
terobjekts ist dabei der Ursprung der Skalierung. Ahnlich wie bei der Rotation wird iiber
Angabe der Achse im Namen definiert, auf welchen Achsen schlieBlich skaliert wird. Bei
der Hierarchie in Abbildung 4.4 kann der Nutzer Objekt 1 um alle Achsen vergroflern und
verkleinern, ausgehend von der Position des Nullobjekts Scale X Y Z in der vorderen unteren
Ecke des Wiirfels als Ursprung.

Objekt 1

<
Scale XY Z

Abbildung 4.4: Die benétigte Objekthierarchie fiir die Skalierung.

e Kombination: Zusitzlich ist die beliebige Kombination der erlaubten Transformationen
moglich. Hierfiir muss fiir jede Manipulation ein eigenes Unterobjekt erstellt werden, da-
bei gelten die Regeln der einzelnen Transformationen. Das Objekt I in Abbildung 4.5 kann
durch die Unterobjekte entlang der Schiene verschoben werden, um die Z-Achse gedreht
und auf allen Achsen skaliert werden.

Objekt 1

Translation 2

Translation 1

ScaleXY Z
Rotation Z

Abbildung 4.5: Die benotigte Objekthierarchie fiir eine Kombination der Manipulationen.

26

4 IMPLEMENTIERUNG DES PROTOTYPS 4.2 Erstellung der 3D-Inhalte

e Sonderbefehle: Nicht nur die Transformationen kénnen im Vorhinein definiert werden. Es
gibt zwei weitere Schliisselworter, welche in den Namen eines Objekts eingefiigt werden
konnen und beim Ladevorgang bestimmte Aktionen auslosen. Die Zeichenfolge ,, _delete_“
16scht ein Objekt beim Importieren. Das ist hilfreich, falls man ein Objekt in der Modelldatei
behalten will, es jedoch spéter nicht in dem Modell sichtbar haben mochte. Der Sonderbe-
fehl ,,_noShadow_* deaktiviert den Schattenwurf. In Abbildung 4.6 wird Objekt I _delete_
beim Laden geloscht, Objekt 2 _noShadow_ wirft keinen Schatten.

Abbildung 4.6: Die zwei Sonderbefehle.

Zusitzlich zu Translation, Rotation und Skalierung gibt es die Moglichkeit, ein Objekt mit
verschiedenen Materialien zu versehen und bei der Ausfithrung per Tap zwischen ihnen zu wech-
seln. Da die Materialien von Objekten in Unity selbst final angepasst werden, um dort direkt die
Optik in der Engine iiberpriifen zu konnen, wird diese Funktion nicht iiber die Objekthierarchie in
der Modelliersoftware definiert sondern beim Export aus Unity heraus in die AssetBundles. Siehe
dazu 4.2.5 Export in AssetBundles.

4.2.3 Testmodelle

Fiir die Entwicklung der Anwendung wurden zunichst drei unterschiedliche Testmodelle entwor-
fen. Anhand dieser Modelle wurden die einzelnen Funktionen implementiert und getestet. Jedes
Szenario hatte dabei einen eigenen Schwerpunkt:

e Der Interaktionsspielplatz: Dies war das erste Testmodell (sieche Abbildung 4.7). An ihm
konnen alle drei Grundtransformationen ausgefiihrt werden. Die griinen Objekte sind in-
teraktiv und heben sich optisch vom Rest der Geometrie ab. Der Quader im Vordergrund
lasst sich skalieren, der windradihnliche Rotor erlaubt dem Nutzer die Rotation. Die bei-
den Quader im Hintergrund sind innerhalb der Fiihrungsschienen verschiebbar und dienen
dem Testen der Translation. Eine Schiene wurde leicht geneigt, so dass die Funktionalitit
der relativen Verschiebung iiberpriift werden konnte. Dieses Objekt muss sich bei korrekter
Umsetzung nicht nur auf einer einzelnen absoluten Weltachse bewegen (z.B. lediglich Ver-
dnderung des X-Wertes) sondern auf einer gekippten Linie (z.B. Verdnderung des X- und
Z-Wertes). Zusitzlich wurde hier mit der Kombination von vorgebackenen Schatten auf der
statischen Geometrie mit den dynamischen Schatten der beweglichen Objekte experimen-
tiert.

Load Model

Abbildung 4.7: Der Interaktionsspielplatz

27

4.2 Erstellung der 3D-Inhalte 4 IMPLEMENTIERUNG DES PROTOTYPS

e Die Kombination: Das Ziel dieses Modell war es, die Korrektheit der Kombination der
Grundtransformationen sicherzustellen (siehe Abbildung 4.8). Die beiden griinen Schei-
ben lassen sich auf den Schienen verschieben, um ihren Mittelpunkt drehen und auflerdem
skalieren. Wie die Kombination schlieBlich im Detail implementiert wurde ist nachzulesen
in 4.4.3 Dynamisches Laden.

Abbildung 4.8: Die Transformationskombination

o Das realistische Haus: Bei dieser Szene ging es vorrangig um die Optik und die Optimie-
rung des Prozesses des Backens. Hier wurden die optischen Moglichkeiten ausgelotet. An
diesem komplexeren Mesh wurde zunéchst der Ablauf des Abwickelns der UV-Koordinaten
getestet, anschlieend die verschiedenen Parameter des Backens festgelegt, wie etwa eine
sinnvolle Groe der Texturen (bei groBen Objekten ist eine Auflosung von 2048x2048 Pi-
xeln meist ausreichend). Auch wurden verschiedene Einstellungen der Unity-Shader erprobt
(etwa Werte und Texturen fiir Albedo, Metallic, Smoothness und Normalmap).

Load Model

Abbildung 4.9: Das Haus

Fiir die Benutzerstudie wurden spiter drei weitere Szenarien mit verschiedenen Anwendungsféllen
erstellt, mehr dazu in 5.1 Konzeption.

4.2.4 Backen der Beleuchtung

Im Folgenden wird der Vorgang beschrieben, der durchlaufen wurde, um hochqualitative beleuch-
tete vorgebackene Texturen fiir die 3D-Modelle zu erhalten. Der erste Schritt ist das Umwandeln
aller parametrischen Objekte zu klassischen Polygonobjekten. Erst danach kann das Mesh
abgewickelt werden, um sinnvolle UV-Maps zu generieren. Bei simpler Geometrie, wie zum

28

4 IMPLEMENTIERUNG DES PROTOTYPS 4.2 Erstellung der 3D-Inhalte

Beispiel Wiirfeln, wurde die Cinema 4D-interne Abwickelfunktion benutzt. Bei komplizierteren
Objekten empfiehlt es sich jedoch, eine Software zu verwenden, die in diesem Bereich mehr
Funktionen und einen angenehmeren Workflow bietet. In diesem Fall erwies sich 3D-COAT
4.5.19 als die richtige Wahl. Der Transfer der Geometrie in die Software und wieder aus ihr
heraus geschah iiber das AppLink 3D-Coat-Plugin. Nach diesem Schritt kann mit dem Backen
begonnen werden.

Wie zuvor erwidhnt wurde aufgrund der besseren Renderzeit und der hoheren Qualitét der
externe GPU-Renderer Octane verwendet. Um mit diesem Texturen zu backen miissen die Szene
und die Objekte wie folgt konfiguriert sein:

o Bendtigte Objekte und Tags:

Octane-Cameralag

I' J, Floar a

— &, Cube Y

Octane-ObjectTag J
Phong-Tag
UV-Tag
Octane-MaterialTag

Abbildung 4.10: Objekthierarchie und Tags

Abbildung 4.10 zeigt die bendtigten Objekte mit ihren dazugehdrigen Tags. Tags sind in Ci-
nema 4D Sammlungen von zusétzlichen Funktionen und Eigenschaften, mit denen Objekte
versehen werden kénnen. So werden zum Beispiel das Material oder das UV-Mapping tiber
Tags definiert. Zusétzlich bietet das Octane-Plugin eigene Tags.

Die zu backenden Modelle sind hier Floor und Cube. Sie besitzen je vier Tags. Das Oc-
tane-ObjectTag definiert bestimmte Eigenschaften, die fiir die Renderengine niitzlich sind.
Weitere Details zu den Einstellungen folgen im eigenen Unterpunkt. Das Phong-Tag erlaubt
Feinjustierung des Phong-Shadings, also ab welchem Grad ein Winkel als Rundung angese-
hen und gezeichnet wird anstatt als harte Kante. Das UV-Tag speichert die UV-Koordinaten
die beim Abwickeln generiert wurden und das Octane-MaterialTag definiert den Shader
des Objekts.

Damit sie sichtbares Licht enthilt benétigt die Szene eine Lichtquelle. In diesem Fall wurde
ein Sky benutzt, der mit einer 360°- HDR-Textur versehen ist. Anhand dieser Textur wird
der Lichteinfall aus der Umgebung berechnet.

SchlieBlich wird noch eine Kamera benétigt, durch welche das finale Bild gerendert wird.
Diese benotigt fiir weitere Einstellungen ein Octane-CameraTag. Sie muss als Renderka-
mera ausgewdhlt sein.

o Einstellungen ObjectTag: Abbildung 4.11 zeigt die benotigten Einstellung des ObjectTags.
Jedes zu backende Objekt muss ein solches Tag erhalten. In diesem wird unter dem Reiter
Object layer die Bake ID festgelegt. Diese beginnt bei ,,2* und wird fiir jede zu rendernde
Textur inkrementiert. Das bedeutet, dass es auch méglich ist, die Texturen mehrerer Einzel-

29

4.2 Erstellung der 3D-Inhalte 4 IMPLEMENTIERUNG DES PROTOTYPS

objekte in ein gemeinsames Bild zu backen, sofern sie die selbe Bake ID besitzen und sich
ihre UV-Koordinaten nicht {iberschneiden.

#@ Ocdane ObjectTag [Octane ObjectTag]

Basic kain Motion blur
Visibility Subdivision Group

Abbildung 4.11: Das Octane-ObjectTag

o Einstellungen CameraTag: Die Konfiguration des CameraTags der Kamera zeigt Abbil-
dung 4.12. Zunichst wird der Camera type auf Baking gestellt. AnschlieBend kann im Ba-
king-Reiter die Baking group ID definiert werden. Diese ist das Gegenstiick zum Wert Bake
ID im ObjectTag. Steht sie also wie in diesem Fall auf ,.2% werden alle Objekte mit der
ID ,,2* in ihrem ObjectTag durch diese Kamera gerendert. Zusitzlich konnen hier weite-
re Feineinstellungen des Backvorgangs vorgenommen werden, die Standardwerte erwiesen
sich allerdings als gut nutzbar.

Odane Camera [OctaneCameraTag]

Motion Blur Camera Imager Post processing

Camera type | Baking -
Baking

Baking group IO 2
L set
Revert baking

k Padding

* UV region

* Baking position

?

Abbildung 4.12: Das Octane-CameraTag

Die Auflosung der Zieltextur kann in den allgemeinen Cinema 4D-Rendereinstellungen fest-
gelegt werden. Hier wurde meist 4096x4096 Pixel gewihlt, da dieser Wert ein Vielfaches von zwei
ist, was der Speicherverwaltung und Performanz der Engine zutriglich ist und die Auflésung noch
viele Details beinhaltet. Die Grofle bietet immer noch die Moglichkeit, die Texturen im Nach-
hinein nach Belieben kleiner zu skalieren, was bei der finalen Version des Prototyps hiufig getan
wurde (auf von 128x128 bis 2048x2048 Pixel).

Mit diesem Vorgang lassen sich ebenfalls Normalmaps und weitere Kanile, wie Ambient Oc-
clusion oder reine Farbinformationen backen.

30

1
2
B
J
4
5

6
7

4 IMPLEMENTIERUNG DES PROTOTYPS 4.2 Erstellung der 3D-Inhalte

Da der Backvorgang fiir viele einzelne Objekte umstindlich und zeitaufwendig ist — jedes Ob-
JjectTag braucht seine eigene manuell zugewiesene Back-1D, jede ID muss einzeln manuell im Ca-
meraTlag der Renderkamera eingestellt werden mit anschlieBendem Anpassen des Ausgabepfads
und Rendern — wurde eigens hierfiir ein Python-Skript geschrieben (im Anhang enthalten). Cine-
ma 4D bietet eine Schnittstelle fiir Python, sodass Aufgaben auf diese Weise automatisiert werden
konnen. Das Skript durchlduft alle ObjectTags und verteilt aufsteigende Bake IDs, erzeugt fiir je-
des Tag eine Renderkamera mit Namen des entsprechenden Objekts und setzt die Frameanzahl des
Cinema 4D-Dokuments auf die Anzahl der unterschiedlichen IDs. Die erstellten Kameras wech-
seln nun abhédngig von der Framenummer durch (im zweiten Frame ist die Kamera mit der Baking
group ID ,,2* aktiv, es werden Objekte mit der Bake ID ,,2* gebacken). Durch diese Herangehens-
weise ist es moglich, die gesamte Bildsequenz des Dokuments in einem Schritt vollautomatisch
zu rendern. Fiir jeden Frame der zu rendernden Sequenz wird eine eigene Textur mit dem Namen
der gerade aktiven Kamera (entspricht dem Objektnamen) gespeichert.

Sind die Texturen schlieBlich gerendert, miissen sie fiir den Export in ein Cinema 4d-Material
geladen werden. Die gebackenen Objekte erhalten ein TexturTag mit entsprechendem Material.
Die Projektion des Materials muss im TexturTag auf UVW-Mapping gestellt werden. Nicht beno-
tigte oder gewiinschte Objekte und Tags werden geloscht und die Szene ist bereit fiir den Export.

4.2.5 Exportin AssetBundles

In diesem Abschnitt wird der Weg eines Modells aus der 3D-Software bis in die fertige App
beschrieben. Die Szene wurde in Cinema 4D bereits soweit vorbereitet, dass sie zum Export
bereit ist. Das bedeutet, dass die gewiinschten erlaubten Transformationen korrekt iiber die
Objekthierarchie definiert sind, die UV-Maps der Meshes abgewickelt sind und die Objekte mit
den entsprechenden Cinema 4D-Materialien versehen sind. Das Modell wird nun direkt aus der
3D-Software als FBX-Datei exportiert. Dieses Dateiformat von Autodesk eignet sich besonders
fiir den Austausch von Objekten fiir die Spieleentwicklung [3]. Die Objekthierarchie bleibt
erhalten und es besteht die Moglichkeit, Materialien mit eingebetteten Texturen zu iibertragen.

Da es in der freien Version von Unity nicht moglich ist, ohne kostenpflichtige Plugins
FBX-Dateien zur Laufzeit in gepackte Anwendungen einzulesen, ist der Weg des Direktimports
der Datei in die AR-App versperrt. Die Unity-Entwicklungsumgebung selbst beherrscht aber
den Import dieses Dateiformats. Sie legt direkt entsprechende Gameobjects (die engineeigene
Reprisentation eines Objekts) mit den passenden Meshs und Unity-Materialien an. Von hier
aus konnen Gameobjects anschlieBend komplett, inklusive ihrer Materialien und Skripte, in
sogenannte AssetBundles gespeichert werden [56]. Diese Objektarchive sind Dateien, die mit
Enginebordmitteln auch in fertigen Anwendungen eingelesen und wieder entpackt werden
konnen. Ein weiterer groer Vorteil dieses Ansatzes ist die Tatsache, dass die 3D-Modelle vor
dem Export in ein AssetBundle weiter angepasst werden konnen. So lassen sich zum Beispiel
die GroBe abstimmen, Shader austauschen, Lichter einfiigen und auch eigene Skripte anhingen.
AuBerdem kann so der finale Look der Objekte in der Engine selbst iberpriift werden.

Fiir diesen Import-Export-Vorgang (FBX nach AssetBundle) wurde ein eigenes Unity-Projekt
angelegt, welches die benotigten C#-Skripte enthélt. Der Export von AssetBundles ist zunichst
nur iiber Code moglich, es sei denn das Projekt enthilt ein Skript mit folgenden Codezeilen:

#if UNITY_EDITOR
using UnityEditor;

public class CreateAssetBundlesAndroid

{
[Menultem ("Assets/Build AssetBundles for Android")]
static void BuildAllAssetBundles ()

31

4.3 Beleuchtung 4 IMPLEMENTIERUNG DES PROTOTYPS

// Erster Parameter definiert Ausgabepfad, der dritte die Zielplattform
BuildPipeline . BuildAssetBundles (" Assets/AssetBundles",
BuildAssetBundleOptions .None, BuildTarget. Android) ;

}

}
#endif

Wird dieses kompiliert erscheint fortan in der Programmoberfliche bei einem Rechtsklick auf
den Contentmanager ein Eintrag zum Speichern der Bundles. Das Projekt enthélt auBBerdem zwei
weitere selbst erstellte Skripte, mit denen Objekte versehen werden konnen:

e Das Thumbnail-Skript. Wird auf das oberste Objekt des Modells in der Hierarchie ange-
wandt. Es enthilt eine frei zugreifbare Variable in der eine Textur hinterlegt werden kann.
Dieses Bild wird spiter beim Laden der Dateien im Modellbrowser der fertigen App als
Vorschaubild angezeigt.

e Das MaterialChanger-Skript: Ermoglicht den Materialwechsel eines Objekts im Prototyp
bei einem Tap darauf. Enthilt ein Array, welches mit einer beliebigen Anzahl an Unity-
Materialien gefiillt werden kann. Zwischen diesen Materialien wird, in im Array definierter
Reihenfolge, zyklisch durchgeschaltet.

Um ein Gameobject einem AssetBundle hinzuzufiigen, muss es als Prefab gespeichert werden.
Prefabs sind in Unity so etwas wie Vorlagen von Objekten, von denen Instanzen erzeugt werden
konnen. Zum Erstellen eines Prefabs muss das Gameobject lediglich per Drag and Drop aus dem
Hierarchie Fenster in den Contentmanager gezogen werden. In dem Prefab lésst sich nun festle-
gen, zu welchem AssetBundle es gehort. Uber die bereits per Skript erstellte Schaltfliiche konnen
nun alle Bundles exportiert und anschlieBend auf das Endgerit des Presenters kopiert werden.

4.3 Beleuchtung

Die Herangehensweise fiir die Verwendung der dynamischen und der vorgebackenen Beleuchtung
in der Anwendung unterscheidet sich leicht. In der Hauptszene, in der Modelle angezeigt werden
ist eine Grundbeleuchtung (Ambient Light) bereits vorhanden. Sie kann in den allgemeinen Ligh-
ting-Einstellungen der Szene (Hauptmeniieintrag Window > Lighting > Reiter Scene) festgelegt
werden. Ohne sie wiren Modelle ohne eigene enthaltene Lichtquelle nicht sichtbar. Die Vorberei-
tungen fiir Modelle mit dynamischer, gebackener oder gemischter Beleuchtung ist wie folgt:

e Dynamische Beleuchtung: Die Objekte in dieser Szene erhalten nur Materialien mit Tex-
turen, die lediglich die grundlegenden Farbwerte enthalten, nicht aber den Einfluss der Be-
leuchtung, wie etwa iiberhellte Stellen oder Schatten. Die Schattierung wird spiter direkt
zur Laufzeit berechnet und angezeigt. Da die Grundszene der Anwendung nur das Ambient
Light ohne Richtung und Schattenwurf enthilt, muss die gewlinschte Lichtquelle in dem
Modell selbst enthalten sein. Dazu werden die Lichtobjekte der Unity-Engine benutzt. Sie
werden vor dem Speichern des gesamten Gameobjects als Prefab und anschlieBendem Ex-
port in AssetBundles in der Modellszene platziert und konfiguriert. Meist wurden gerichtete
Lichter verwendet (Directional Lights) in deren Einstellungen der Schattenwurf auf Soft
Shadows gestellt wurde. Soft Shadows bieten eine leicht hohere Qualitit als die Hard Sha-
dows, sind aber etwas teurer in der Berechnung. Schliellich wird das gerichtete Licht so
rotiert, dass es aus der priferierten Richtung kommt.

o Gebackene Beleuchtung: Hier erhalten die verwendeten Materialien die Texturen, die im
Vorhinein mit dem Octane-Renderer in Cinema 4D gebacken wurden. Da hier die hoch-
qualitative Beleuchtung direkt in den Texturen fest gespeichert ist, wird im Gegensatz zu
dem dynamischen Ansatz kein zusétzliches Licht zwingend benétigt. Es kann aber hilfreich

32

4 IMPLEMENTIERUNG DES PROTOTYPS 4.4 Backend

sein, ein Ambient Light ohne Schattenwurf in das Modell zu integrieren. So ldsst sich die
komplette Szene noch feinjustieren, etwa aufhellen oder einfarben, falls die gerenderten
Texturen in der Engine nicht optimal erscheinen.

e Kombination: Beide Herangehensweisen lassen sich auch beliebig kombinieren. So kann
es sinnvoll sein, fiir statische Objekte eine vorgebackene Beleuchtung zu verwenden, wih-
rend bewegliche Objekte dynamisch beleuchtet werden. Dafiir erhalten die Gameobjects die
Materialien mit den entsprechenden Texturen. Die Szene wird wie beim dynamischen An-
satz durch ein Unity-Licht beleuchtet, welches so konfiguriert wird, dass sich seine Schatten
mit den vorberechneten Schatten decken. AnschlieBend wird die Dichte der Schatten des
Lichts an die gebackenen angepasst. Fiir jedes Objekt kann nun festgelegt werden, ob es
von dem dynamischen Licht einen Schatten wirft (bewegliche Objekte) oder nicht (statische
Objekte).

4.4 Backend

Dieses Kapitel beschreibt die Entwicklung des Backends: welche Bibliotheken und Skripte im
Hintergrund benutzt werden und welche wichtigen Vorgiinge dort ablaufen. Zunichst wird das
Einbinden und Einrichten der Vuforia-Trackinglibrary beschrieben, gefolgt von der Verwendung
der TouchScript-Library fiir die Touchbedienung. AnschlieBend folgen die Details des dynami-
schen Ladens der Modelle zur Laufzeit und der Netzwerkkommunikation.

4.4.1 Vuforia

Fiir die Augmented Reality-Funktionen wurde in diesem Prototyp die Vifforia-Trackinglibrary ver-
wendet. Nach Anlegen eines kostenlosen Developeraccounts lédsst sie sich in verschiedenen Ver-
sionen von der Vuforia Website herunterladen [62]. Es besteht die Auswahl zwischen dem SDK
fiir Android (Java/C++), i10S (C++) und Unity. Nach dem Download des Unity-SDKs wird dieses
entweder durch Ausfiihren der heruntergeladenen Datei oder durch manuellen Import in ein vor-
handenes Unity-Projekt integriert. Im SDK enthalten sind die bendtigten Skripte fiir die Tracking-
funktionen, Beispiele, sowie Elemente fiir die Anzeige, wie Schriftarten, Materialien, Shader und
Texturen. Hilfreich sind auBerdem die vorgefertigten Prefabs, wie die zwei Grundbestandteile: die
ARCamera und das ImageTarget. Sie konnen einfach in die Szene eingefiigt werden und besitzen
schon alle notwendigen Skripte und Einstellungen um schnell erste Ergebnisse zu erzielen.

e ARCamera:

Y@ [¥ vuforia Behawiour (Script) ﬁ o,
Script VuforiaBehaviour Q
App License Key AbtQ+6,////AAAAAQLTKMmMAIEMZhyNdQ2,/aZzh1el

QZ¥uiDjdt4K ja4sB4KqB/5ELZ4pHRYKBQsrWCUkdah
+ZNEBYEt]KQg0940s1/IBGesEfwsLDOvKEt3ga/hhxUIV
I10BMPIADOZrSen0oHaXa0V+WuocZnWxEnc+SoNm

Camera Device Mode | MODE_OPTIMIZE_QUALITY : |

Max Simultaneous Tracked Imag) 1

Max Simultaneous Tracked Objec 1
Delayed Loading Object Data Set[|

Camera Direction | CAMERA_DEFAULT 4 |

Mirrar Video Background | DEFAULT 3 |

World Center Mode | FIRST_TARGET s |

Bind Alternate Camera]

I Enable Stereo Cameras I
b || M Default Initialization Error Handler (Script) g
P@ [¥ patabase Load Behaviour (Script) ﬁ 3,
» [/ M Web Cam Behaviour (Script) @ .
P@ Keep Alive Behaviour (Script) ﬁ o,
b [M Video Texture Renderer (Script) Q) %,

Abbildung 4.13: Die Einstellungen des ARCamera-Objekts

33

4.4 Backend 4 IMPLEMENTIERUNG DES PROTOTYPS

Das ARCamera-Objekt selbst ist keine tatsdchliche Unity-Kamera sondern besitzt so ei-
ne Kamera als Unterobjekt, durch welche die Ansicht gerendert wird. Die Synchronisation
der Position der ARCamera in der realen und der digitalen Welt wird durch Skripte von
Vuforia anhand des optischen Trackers gewdhrleistet. Durch die Unterordnung der Unity-
Kamera werden die errechneten Koordinaten immer auch auf diese iibertragen. Abbildung
4.13 zeigt die zugeordneten Skripte und die Einstellungen des Vuforia Behaviour Scripts.
Die Standardeinstellungen erwiesen sich als praktikabel, sodass hochstens kleine Anpassun-
gen vonnoten waren. Fiir das Benutzen des Viforia-SDKs muss iiber die Entwicklerwebsite
ein Lizenzschliissel beantragt werden, welcher in das Feld App License Key eingetragen wer-
den muss. Er dient zur Identifikation der Anwendung bei der Zuordnung von Clouddiensten
und dem Bezahlmodell.

e ImageTarget:

» | MMesh Renderer i %
v @| [Image Target Behaviour_!Scr_iPt_]_ - ﬁ_ -
Seript ImageTargetBehaviaur :
Type | Pradefinad +]
Data Set | MyTestDBE 3|
Image Target | AR_LogeD2 2.
Width 130
Height 21.20867
Preserve child size]
Extended Tracking L]
Smatt Terrain]
b |z Turn OFf Behaviour (Script) il %
> @ ¥ Default Trackable Event Handler (Script) ﬁ 3,
» [z M Init Objects (Script) %,
| S (Mesh Filter) [l %
.. AR_Logo02_scaledMaterial & =
. .1 * Shader | Unlit/Texture =,

Abbildung 4.14: Die Einstellungen des ImageTarget-Objekts

Das ImageTarget ist der zweite Grundbaustein fiir die Trackingfunktion. Abbildung 4.14
zeigt die zugewiesenen Skripte und Einstellungen des Image Target Behaviour Scripts. Es
handelt sich dabei um ein Gameobject, das den realen ausgedruckten 2D-Tracker in der di-
gitalen Version der Welt reprisentiert. Es besitzt das Mesh einer ebenen Fldache und das Ma-
terial mit dem ausgewdhlten Trackingbild als Textur. Die Geometrie ist jedoch eher fiir die
Hilfe bei der Entwicklung im Unity-Editor gedacht, zur Laufzeit wird dieses Mesh standard-
miBig ausgeblendet. Um dreidimensionale Modelle in der Anwendung auf dem Tracker an
der korrekten Position in der realen Welt anzuzeigen, miissen sie lediglich in der Hierarchie
dem ImageTarget untergeordnet sein. Sobald Vuforia den entsprechenden Tracker erkennt
werden die Unterobjekte eingeblendet.

Um dem ImageTarget ein Bild als Tracker zuzuweisen ist der Umweg iiber die Vuforia-
Entwicklerwebsite notwendig. Die gewiinschten Targets werden hier in eine Datenbank
hochgeladen und serverseitig auf ihre Eignung als Tracker analysiert. Besonders gut eignen
sich Bilder mit hohen Kontrasten und harten Kanten. Bei dem Vorgang werden in der Tex-
tur auBerdem Trackingpunkte gesetzt, an denen sich Vuforia spiter orientieren kann. Nach
der Verarbeitung kann die Datenbank als Ganzes heruntergeladen und in das Unity-Projekt
importiert werden. Erst jetzt kann in dem Image Target Behaviour Script des ImageTrackers
dem Parameter Data Set die Datenbank zugewiesen werden und als Image Target wird eines
der Targets, also der enthaltenen Bilder, definiert. Zusitzlich konnen Breite und Hohe des
Trackers in Welteinheiten angepasst werden.

Nun ist das Vuforia-SDK vollstindig in das Projekt eingebunden und kann verwendet werden.

34

4 IMPLEMENTIERUNG DES PROTOTYPS 4.4 Backend

4.4.2 Touchbedienung mit TouchScript

Fiir eine positive Benutzererfahrung und fiir die Moglichkeiten, die der Prototyp bieten sollte, war
es unerldsslich, eine gut funktionierende Touchbedienung zu implementieren. Der erste Ansatz
war die vollstindige manuelle Programmierung aller Grundlagen iiber die von Unity zuriickge-
gebenen Bildschirmkoordinaten eines Klicks beziehungsweise Touches. Dies erwies sich fiir die
benotigten komplexen Funktionen als wenig zielfiihrend und zeitlich ineffektiv. Es war sinnvoller,
dafiir auf eine Library zuriickzugreifen, die die Grundfunktionen bereits enthélt und auf der weiter
aufgebaut werden konnte.

Die Wahl fiel auf TouchScript [52]. Dieses freie Unity-Plugin bietet Funktionen und vordefi-
nierte Gesten der Single- und Multitouchbedienung und lésst sich iiber GitHub oder direkt iiber
den Unity Asset Store herunterladen. Im Paket enthalten sind die Skripte, Beispiele, Texturen und
Shader sowie Prefabs. Um die Library zu verwenden muss ein Objekt der Szene das TouchMa-
nager Script erhalten. Dieses verwaltet die grundsétzlichen Funktionen. Die manipulierbaren Ob-
jekte selbst werden mit einem MeshCollider Script fiir das Erkennen der Kollision der Touches
und mit einem TransformGesture Script versehen. In diesem kann die Art der Transformation
auf Translation, Rotation oder Scaling oder einer Kombination daraus festgelegt werden. Fiir die
Rotation hat es sich als sinnvoll erwiesen stattdessen das PinnedTransformGesture Script zu nut-
zen, da so ein Punkt fixiert ist und die Drehung mit nur einem Finger ausgefiihrt werden kann.
Fiir jede Grundtransformation wird eine eigene Geste definiert, da so die Projektionsebenen der
Touchbewegungen individuell anpassbar sind. Damit die erkannte Bewegung auch auf das Ob-
jekt angewandt wird, braucht es zu guter Letzt das Transformer Script. Abbildung 4.15 zeigt die
Skripte eines korrekt eingerichteten manipulierbaren Objekts.

Abbildung 4.15: Die TouchScript-Skripte eines Objekts, das alle drei Grundmanipulationen er-
laubt.

Mit TouchScript ist es moglich, verschiedene Gesten auf einem Objekt zu kombinieren. In etwa
um dieses gleichzeitig verschieben (TransformGesture) und drehen (PinnedTransformGesture) zu
konnen. Damit sie sich nicht gegenseitig behindern oder ausschliefen miissen die verwendeten
Gestenskripte beim jeweils anderen als Friendly Gesture eingetragen werden. In Abbildung 4.15
befindet sich diese Konfiguration hinter den eingeklappten Advanced-Tabs und ist deshalb dort
nicht sichtbar.

Die Details der Implementierung, etwa wie Modelle beim Laden automatisch mit den bent-
tigten Skripten und Einstellungen versehen werden, folgen im néchsten Abschnitt.

35

10
11

1
2
3
4
5

11
12

-

13
14
15
16
17
18
19

[\
W N = O

[NOT NN \O I O I O]

9]

4.4 Backend 4 IMPLEMENTIERUNG DES PROTOTYPS

4.4.3 Dynamisches Laden

Ein wichtiges und komfortables Feature der fertigen Anwendung ist die Austauschbarkeit der
Modelle. Dafiir ist es unerlésslich, dass diese wihrend des Ladevorgangs aus den AssetBundles
analysiert und die notigen Skripte mit den korrekten Einstellungen zur Laufzeit eingefiigt werden.

In diesem Teil wird der genaue Ablauf des Ladens beschrieben. Die Netzwerkfunktion, wie
etwa die Modellverteilung an die Clients, ist Teil des nédchsten Abschnitts. Alle Instanzen der
Anwendung, egal ob sie Presenter oder Spectator sind, bekommen die Anweisung den Lade-
vorgang zu starten von dem Server. Der Presenter ist zugleich Server und auch Client. Fiir die
In-/Outputfunktionen, wie das Auslesen von Dateien, ist die selbstgeschriebene statische FileMa-
nager-Klasse zustindig. Sie bekommt als erste den Aufruf zum Laden eines Modells. Ihr werden
der Name des gewiinschten AssetBundles, der Name des Modells selbst und die Dateigrofe des
Bundles iibergeben. Der Algorithmus der entsprechenden Methode in Pseudocode lautet wie folgt:

static void checkAndLoadModel(assetbundlename , modelname, filesize) {
if (!fileFound (assetbundlename) |l !sameFileSize (assetbundlename, filesize))
{
//AssetBundle nicht gefunden oder falsche Grofie
//Verlange Bundle vom Server
requestAsset (assetbundlename , modelname) ;
} else {
//AssetBundle gefunden, lade Modell
loadModelFromAssets (assetbundlename , modelname) ;

Die Methode loadModelFromAssets 14dt darauthin das Gameobject aus dem AssetBundle und
ibergibt es weiter an das InitObjects-SKkript. Dieses Skript regelt das Einfiigen aller Objekte in die
Szene, auch das der nicht manipulierbaren, einschlielich der leicht unterschiedlichen Behandlung
auf Host und Clientseite. Die wichtige Methode ist hier loadModel. Sie liest das erste Mal die
Hierarchie und die Objektnamen des Modells aus. Der stark reduzierte Pseudocode lautet:

void loadModel (gameobject) {
interactionFound = false;
foreach (child in gameobject.children) {
if (child .name.contains(‘_delete_ “))
child.destroy () ;
if (child .name.contains (‘_noShadow_ ‘))
child . disableShadows () ;
if (child.hasMaterialChangerScript())
interactionFound = true;
if (child.hasChild & child.child .name.contains (’ Translation ’|’ Rotation ’|’
Scale ’))
interactionFound = true;
if (interactionFound == true){
child . AddMeshCollider () ;
// Skript, das fiir Einrichtung manipulierbarer Objekte zustindig ist:
child. AddInitManipulatableObjectScript();
if (Player == Host){
Server.SpawnObjectOnClients (gameobject);
} else if (Player == Client){
Client.RegisterObjectAsSpawnable (gameobject);
// Zerstdore Instanz und warte auf Spawnbefehl vom Server
gameobject. destroy () ;

36

1
2
3
4
5

19
20
21

22

4 IMPLEMENTIERUNG DES PROTOTYPS 4.4 Backend

Die Einrichtung der Objekte, die von dem InitObjects-Skript als manipulierbar erkannt wur-
den, wird an das InitManipulatableObjects-Skript iibergeben. Jedes dieser Objekte besitzt nun
dieses Skript. Es versieht die Gameobjects mit den passenden TouchScript-Skripten und stellt die-
se, wie im vorigen Abschnitt beschrieben, korrekt ein. Dadurch wird es erst moglich, einzelne
Objekte zu bewegen:

void initManipulation () {
foreach (child in gameobject.children) {

if (child .name.contains(‘Translation ‘)){
//Lege erlaubten Bewegungsbereich anhand der Position fest
startPosition = gameobject.position;
goalPosition = child. position;
addAndSetupTranslationTransformGesture () ;

}

if (child .name.contains (‘Rotation °)){
//Lege erlaubte Rotationsachsen anhand des Namens (XYZ) fest
setRotationPlane (child .name) ;
addAndSetupRotationPinnedTransformGesture () ;

}

if (child .name.contains (‘Scale ‘)){
//Lege erlaubte Skalierungsachsen anhand des Namens (XYZ) fest
setScalePlane (child .name) ;
addAndSetupScaleTransformGesture () ;

}

}

// Definiere fiir die Kombination alle Gesten als friendly zueinander
addAllGesturesAsFriendly () ;

}

Nun ist das Modell eingelesen, die Objekthierarchie wurde durchlaufen, analysiert und die in
ihr definierten erlaubten Interaktionen wurden umgesetzt. Der Nutzer ist jetzt in der Lage, das
dynamisch geladene Modell zu manipulieren.

4.4.4 Netzwerkkommunikation

Die Netzwerkkommunikation war ein weiterer groler und komplexer Schwerpunkt in der Ent-
wicklung. Die Umsetzung war sehr zeitaufwendig und forderte das Beachten vieler verschiedener
Aspekte. In diesem Abschnitt werden die grundlegenden Ablaufe der Multi-User-Funktionen er-
lautert. Unity bietet mit UNet eine Palette vorgefertigter Skripte fiir Multiplayeranwendungen. Im
Laufe der Entwicklung hat sich jedoch gezeigt, dass diese teilweise duBSerst unperformant und
fehlerbehaftet sind oder fiir die speziellen Anforderungen dieser Anwendung nicht nutzbar waren
(siehe dazu auch 4.6.2 Unity UNET im Kapitel 4.6 Schwierigkeiten bei der Umsetzung). Aufgrund
dessen wurden einige der Skripte erweitert und andere komplett neu geschrieben.

Die grundlegende Netzwerkarchitektur ist in Abbildung 4.16 dargestellt. Es gibt einen Host,
der Presenter, welcher zugleich Serverfunktionalitidten im Hintergrund bietet aber doch auch ein
Client ist. Zu ihm konnen sich beliebig viele Clients (Spectators) verbinden.

Die Hauptfunktionen des Verbindungsaufbaus und der -verwaltung iibernimmt das Network-
Manager_Custom-Skript welches von der UNer-Klasse NetworkManager erbt. Diese enthilt ei-
nige Methoden, die fiir das Offnen und SchlieBen von Sessions und Verbindungen zustiindig sind,
auflerdem lassen sich hier zahlreiche Netzwerkeinstellungen festlegen (so zum Beispiel Adresse
und Port, Kanile und Timeouts). Die erbende Klasse iiberschreibt viele Methoden, die bei be-
stimmten Netzwerkevents ausgelost werden, wie etwa OnServerConnect beim Verbinden eines
Clients zum Server oder OnLevelWasLoaded beim Wechseln der aktuellen Szene. Der Ablauf
des Verbindungsaufbaus ist wie folgt, die Methoden befinden sich hier alle in NetworkMana-
ger_Custom:

37

4.4 Backend 4 IMPLEMENTIERUNG DES PROTOTYPS

Clients

Host
(Client + Server)/
j

Abbildung 4.16: Die Netzwerkarchitektur.

e Auf Hostseite: Nachdem im Hauptmenii die Wahl auf das Erzeugen einer Session gefal-
len ist, wird CreateSession() ausgefiihrt. Der Verbindungsport wird aus dem Interface gele-
sen und gespeichert, anschlieBend wird StartHost() im NetworkManager aufgerufen. Diese
Methode startet das Horchen nach Verbindungen und wechselt aus dem Hauptmenii in die
Hauptansicht der Anwendung. Zusitzlich wurde manuell die Methode OnServerChatMes-
sage registriert, welche die Behandlung von eingehenden Nachrichten ibernimmt. Beim
Szenenwechsel wird der OnLevelWasLoaded-Event ausgeldst durch welchen Anderungen
an der Oberfliche, wie das Aktualisieren von Texten, abhidngig von der Rolle des Nutzers
(Presenter oder Spectator) durchgefiihrt werden.

Verbindet sich ein nun ein Client zum Server wird die Methode OnServerConnect aufge-
rufen, welche erkennt ob es sich um einen externen Client handelt oder um den Presenter
selbst (der Host ist zugleich einerseits Server wie auch ein sich verbindender Client). An-
schlieBend wird OnServerAddPlayer ausgelost. Hier wird fiir jeden Client ein Spielerobjekt
erzeugt mit dem Modell einer kleinen Kamera, die stets der Position des Spielerendgerits
folgt. Dieses Objekt stellt auch die Verbindung zu dem speziellen Nutzer dar, Nachrich-
ten konnen dariiber an genau diesen Client versendet werden, verldsst er die Session wird
es automatisch von UNet geloscht. Zuletzt wird nun die Anzahl der verbundenen Clients
inkrementiert und im Interface des Presenters geupdated.

o Auf Clientseite: Mochte sich ein Nutzer zu einer vorhandenen Session verbinden wird die
Methode JoinSession ausgefiihrt. IP-Adresse und Port werden aus den entsprechenden Text-
feldern gelesen und gesichert. Im NetworkManager wird StartClient() aufgerufen, auf diese
Weise wird versucht, eine Verbindung zum Server aufzubauen. Wihrenddessen wird dem
User ein Popup angezeigt, das ihn iiber diesen Vorgang informiert. Bei erfolgreichem Ver-
bindungsaufbau wird auch hier ein Event fiir den Nachrichtenerhalt registriert (OnClientCh-
atMessage), die Methode OnClientConnect wird ausgefiihrt, welche bei dem Server nach-
fragt, ob bereits ein Modell geladen ist und wenn ja, um welches es sich dabei handelt.
Wie auf der Serverseite wird auch hier der OnLevelWasLoaded-Event ausgelost, der das
Interface der Rolle anpasst.

Nach diesen Schritten ist die Verbindung erfolgreich aufgebaut, die Kommunikation zwischen
Presenter und Spectator regelt die weiteren Vorgédnge. Fiir diese hat es sich als sinnvoll erwiesen,
eine Mischung aus Remote Procedure Calls (RPCs) und klassischen Nachrichten zu verwenden.
RPCs sind Methoden, die tiber das Netzwerk hinweg bei den anderen Endpunkten aufgerufen wer-
den konnen. Sie machen die Netzwerkkommunikation einfach und iibersichtlich, haben in UNet
allerdings den sehr groBen Nachteil, dass es keine Unterscheidung zwischen einzelnen Clients

38

whn W=

~N

1
2
3
,_']_
5

6

[ee)

10

4 IMPLEMENTIERUNG DES PROTOTYPS 4.4 Backend

gibt. Es ist nur moglich, einen RPC bei dem Server oder bei ALLEN Clients aufzurufen. Fiir
Meldungen, die nur an bestimmte Nutzer gehen sollen, wurde deshalb das UNer-eigene Message-
system verwendet. Hierbei gibt es entweder vordefinierte Nachrichtentypen oder man deklariert
seine eigenen mit den gewiinschten Nachrichtenfeldern. In diesem Fall wurde eine eigene Status-
Message-Klasse definiert, die die folgenden Felder enthilt:

public class StatusMessage : MessageBase

{
public string message; //Typ oder Inhalt

public string data; //Beliebige Daten (z.B. Modellname)
public string filename; //Dateiname des AssetBundles
public long filesize; //Dateigriofie des AssetBundles

Eine Methode zum Senden einer Nachricht zum Mitteilen des aktuell geladenen Modells von
Server an Client sieht wie folgt aus:

public static void sendWhatlsLoadedServer (NetworkConnection connection) {
//Erzeugen des Nachrichtenobjekts
MyMessages . StatusMessage msg = new MyMessages. StatusMessage () ;

// Fiillen der Nachricht mit Inhalt
msg. message = "WhatlsLoaded";
msg. filename = assetbundlename;
msg.data = modelname;

msg. filesize = filesizeLong;

//Senden iiber gewiinschten Kanal
connection .SendByChannel ((short)MyMessages. MyMessageTypes.STATUS_MESSAGE,
msg, channel);

Das Laden eines Modells auf Seite des Presenters wird per RPC an alle Clients iibermittelt.
Nachdem ein Modell im Ladeinterface ausgewéhlt wurde, wird im Spielerobjekt, das die Verbin-
dung zum Server darstellt, die Methode LoadModelToServer zusammen mit den Parametern As-
setBundleName, Modelname und AssetBundleFileSize aufgerufen. Diese fiihrt per RPC auf dem
Server eine Methode aus, welche wiederum bei allen verbundenen Clients einen RPC mit den
selben Parametern aufruft, der ihnen den Befehl zum Laden dieses bestimmten Modells gibt. Der
Ablauf ist also: Presenter schickt RPC an Server, Server schickt RPC an alle Clients, Clients laden
das korrekte Modell.

Der Ladeaufruf erreicht die in 4.4.3 Dynamisches Laden vorgestellte FileManager-Klasse,
die fiir I/O-Funktionen zustindig ist. Sie Uiberpriift, ob das benutzte AsserBundle lokal auf dem
Endgerit des Nutzers vorliegt, indem es Name und Dateigrofle vergleicht. Falls dem so ist, beginnt
der bereits beschriebene dynamische Ladevorgang. Falls nicht, fordert sie die Datei beim Server
an. Dies geschieht nicht iiber RPCs, sondern StatusMessages, da nur der eine Client das Modell
benotigt. Die Anfrage an den Server geschieht wie folgt:

MyMessages . StatusMessage msg = new MyMessages. StatusMessage () ;

msg.message = "gimme";
msg.data = filename;

NetworkManager. singleton.client.Send ((short) MyMessages. MyMessageTypes.
STATUS_MESSAGE, msg);

//Erzeugen und Starten eines eigenen Threads

Thread thread = new Thread (() => sendBundleTCPClient(fullpath , NetworkManager.
singleton.client.connection, port));

thread . Start () ;

39

18
19
20
21

4.4 Backend 4 IMPLEMENTIERUNG DES PROTOTYPS

Wie in dem Code zu sehen wird nach Senden der Anfrage ein eigener Thread gestartet, der
nicht blockierend auf den Eingang der Datei vom Server wartet. Das Ubertragen der Datei ge-
schieht iiber eine klassische TCP-Filestream-Verbindung. Die UNet eigenen Nachrichten erwiesen
sich hierfiir als keineswegs geeignet, die Dateniibermittlung war zwar moglich aber umsténdlicher
und um ein Vielfaches langsamer.

Wihrend der Dateiiibertragung sieht der Nutzer ein Informationsfenster, unter anderem mit
einem Fortschrittsbalken und der Menge an bereits iibertragenden Daten (zu sehen in 4.5.2 Prid-
sentationsansicht). In dem Thread auf Seiten des Clients geschieht vereinfacht folgendes:

// Starten des Listeners, der auf die Verbindung horcht
var listener = new TcpListener (IPAddress.Any, port);
Debug.Log ("Listening...");

// Dieser Aufruf ist blockierend, Fortfahren erst nach Verbindungsaufbau
listener . Start () ;
Debug.Log ("Found connection...");

//Eingehenden Datenstream abgreifen
var incoming = listener.AcceptTcpClient();
var networkStream = incoming.GetStream () ;

// Netzwerkstream in Filestream (=Datei) kopieren

FileStream fileStream ;

using (fileStream = File.OpenWrite(fullpath)) {
CopyStream (networkStream , fileStream);

}

//Verbindung schliefien
listener .Stop () ;
Debug.Log ("Closed connection...");

Natiirlich besitzt der Server das passende Gegenstiick zum Senden der Datei. Der Sendevor-
gang wird gestartet, nachdem die AssetBundle-Anfrage von dem Client empfangen wurde und
lauft analog zum Empfang ab:

var client = new TcpClient();

client.Connect(IPAddress.Parse(ip), port);
Debug.Log ("Connection established ...");

var networkStream = client.GetStream () ;

FileStream fileStream;
using (fileStream = File.OpenRead(fullpath)){
CopyStream (fileStream , networkStream);

}

client.Close () ;
Debug.Log ("Closed connection...");

Nach Beenden der Dateiiibertragung versucht der Client erneut, das Modell zu laden, diesmal
ist es vorhanden und der dynamische Ladevorgang beginnt. Damit ist die Kommunikation aller-
dings nicht beendet. Ab jetzt muss der Stand der Szene bei allen Specators mit dem auf der Seite
des Presenters synchron gehalten werden, damit seine Objektmanipulationen fiir alle Teilnehmer
der Session sichtbar sind.

UNet bietet dafiir eigentlich das Network Transform Script, welches vollautomatisch die Syn-
chronisation eines Objekts an allen Endpunkten iibernehmen sollte. Aufgrund der besonderen Art
der Modellverteilung und dem dynamischen Laden im Prototyp versagt es jedoch seinen Dienst.
Hintergriinde dazu finden sich unter 4.6.2 Unity UNET im Kapitel 4.6 Schwierigkeiten bei der
Umsetzung. Aufgrund dessen wurde auch hier ein eigenes Skript geschrieben, das SyncScript. Es

40

4 IMPLEMENTIERUNG DES PROTOTYPS 4.4 Backend

synchronisiert Position, Rotation, Skalierung und das Material eines Objekts iiber das Netzwerk,
jedes manipulierbare Objekt bekommt dieses Skript zugewiesen. Dafiir benutzt es Unity SyncVars.
Bestimmte Arten von Klassenvariablen konnen als SyncVar deklariert werden. Die Werte dieser
Variablen werden stets bei allen Clients abgeglichen und aktualisiert. Die Deklaration geschieht
durch das Voranstellen des Schliisselwortes:

[SyncVar]

private Vector3 syncPos;

[SyncVar]

private Vector3 syncScale;

[SyncVar]

6 private Quaternion syncRotation = Quaternion.identity ;

O T N S R N

Fiir das Ubertragen der riumlichen Daten wird in der FixedUpdate-Methode des SyncScripts,
welche immer in gleichem zeitlichen Abstand unabhingig von der Framerate ausgefiihrt wird,
TransmitTransform() aufgerufen:

[ClientCallback] //diese Methode wird nur auf Clients ausgefiihrt

1

2 void TransmitTransform () {

3

4 if (hasAuthority &&

5 (Vector3.Distance (object.localPosition , lastPos) > 0.1 ||

6 Quaternion . Angle(object.rotation , lastRotation) > 5.0 ||

7 Vector3.Distance (object.localScale , lastScale) > 0.1))

8

9 // Client hat Autoritit —> ist der Host und Transformationen iiberschreiten
Schwellenwerte

10

11 //RPC auf Server, der das Objekt aktualisiert

12 CmdSendTransform(object.localPosition , object.rotation , object.localScale);

J

14 // Transformationen zwischenspeichern zum spdteren Abgleich mit den
Schwellenwerten

15 lastPos = object.localPosition;

16 lastRotation = object.rotation;

17 lastScale = object.localScale;

18 }

19}

Die in dem Code per RPC auf dem Server aufgerufene Methode aktualisiert die SyncVars des
Objekts mit den iibermittelten Werten aus der TransmitTransform-Methode:

[Command] //RPC auf Server

I

2 void CmdSendTransform (Vector3 pos, Quaternion rot, Vector3 scale)({
3 syncPos = pos;

4 syncRotation = rot;

5 syncScale = scale;

6}

Da es sich bei den Variablen um SyncVars handelt, werden diese automatisch bei allen ver-
bundenen Clients aktualisiert. Damit die 3D-Objekte dort nicht ruckartig springen, falls eine Be-
wegung zu schnell war oder iibermittelte Werte wegen schlechter Netzwerkbedingungen auf dem
Transportweg verloren gehen, wird zwischen den aktuellen und den {ibermittelten Transformati-
onswerten per linearer Interpolation iiberblendet, die Methode wird in jedem Frame aufgerufen:

41

1
2
3
5

6

7
8

4.5 Frontend 4 IMPLEMENTIERUNG DES PROTOTYPS

void LerpTransform () {
if (!hasAuthority) //Nur wenn es ein purer Client ist und nicht der Host

{

object.localPosition = Vector3.Lerp (object.localPosition, syncPos, Time.
deltaTime * lerpRate);

object.localScale = Vector3.Lerp (object.localScale, syncScale, Time.
deltaTime x lerpRate);

object.rotation = Quaternion.Lerp (object.rotation , syncRotation, Time.

deltaTime * lerpRate);

}
}
Der Abgleich der Materialwahl lduft analog ab, hier wird iiber eine Integer-SyncVar der Index
des aktuellen Materials im Materialarray des MaterialChanger-Skripts synchron gehalten, eine
Interpolation gibt es dabei nicht.

4.5 Frontend

Neben der Entwicklung des Backends wurde der Fokus auch auf das Frontend gelegt. Die App
sollte optisch ansprechend und dabei leicht zu bedienen sein. Der Nutzer sollte {iber die Vorginge,
die ihn betreffen, ausreichend Feedback erhalten. Fiir die Farbgestaltung der optischen Elemente
wurde eine Palette an harmonierenden Farben definiert, das entwickelte Farbschema ist in Abbil-

dung 4.17 dargestellt.

R 216 R 150 R 104 R 065 R 037 R 072
G 206 G 150 G 107 G 065 G 047 G 091
B 203 B 150 B 107 B 065 B 050 B 097

Abbildung 4.17: Die Farbpalette der Anwendung.

Zur Umsetzung des Interfaces wurde das Unity-eigene Ul System verwendet. Es bietet die
iiblichen Elemente wie ein Canvas, Buttons oder Labels. Zusitzlich enthilt es eine komfortable
Layoutverwaltung mit Grid- und Linear Layouts. Auch die Eventabfrage zeigt sich leicht ver-
standlich und meist fehlerfrei.

Das Userinterface ist in grundsitzlich zwei Ansichten geteilt. Die Anwendung startet in das
Hauptmenii und wechselt nach erfolgreichem Erstellen oder Beitreten einer Session in die Prisen-
tationsansicht, der eigentlichen Hauptoberfliche mit weiteren Untermeniis.

4.5.1 Hauptmenii

Das Hauptmenii begriifit den Nutzer nach dem Starten der App und ist bewusst einfach und klar
gehalten (siehe Abbildung 4.18a). Es gibt zunédchst nur die Moglichkeit, zwischen dem Erstellen
einer Session (entspricht Rolle des Presenters) und dem Beitreten zu einer vorhandenen Sessi-
on (Rolle des Spectators) zu wihlen. Erst nachdem man sich fiir eine Rolle entschieden hat, wird
nach Tap auf den Button das entsprechende Untermenii mit den weiteren benétigten Eingaben ani-
miert ausgeklappt. Die Ansicht mit beiden ausgefahrenen Untermeniis zeigt Abbildung 4.18b. Fiir
das Hosten einer Priasentationssession muss zum Aufbau der Verbindung zu den Clients ein freier
Port angegeben werden. Auf diesem Port sucht die Anwendung nach eingehenden Verbindungen.
Mochte man einer bestehenden Session beitreten, wird die IP-Adresse des Hosts und ebendieser
Port benotigt. Diese Informationen werden dem Presenter in seiner Prisentationsansicht ange-
zeigt, sodass er diese Informationen nur an die Spectators weitergeben muss. Die im Hauptmenii
getitigten Eingaben wie IP und Port werden zudem persistent gespeichert.

42

4 IMPLEMENTIERUNG DES PROTOTYPS 4.5 Frontend

AR VIEWER

Create Session

Join Session

(a) Die Ansicht nach dem Start.

AR VIEWER

Create Session

port: 7777 Go

Join Session

(b) Create Session- und Join Session-Tabs aufgeklappt.

Connecting..

(c) Die animierte Ladeanzeige nach dem Tap auf Go.

Abbildung 4.18: Der Weg durch das Hauptmenii. 43

4.5 Frontend 4 IMPLEMENTIERUNG DES PROTOTYPS

Es ist als nicht notig, diese Daten bei jedem Start neu angeben zu miissen, sofern man sich
zu dem selben Host verbindet. Der anschlieBende Tap auf die Go-Schaltfliche baut die Verbin-
dung auf und l4dt die Hauptszene. Feedback dariiber bekommt der User iiber eine Einblendung
(siehe Abbildung 4.18c), die besteht bis die Anwendung in den nichsten Bildschirm wechselt, die
Prisentationsansicht.

4.5.2 Prisentationsansicht

Die Prisentationsansicht ist das eigentliche Gesicht der App (siehe Abbildung 4.19). Alle Haupt-
funktionen laufen uiber dieses Interface und der Benutzer findet sich in ihr wieder, sobald er das
Hauptmenii verlassen hat. Auf der gesamten Fliche ist der Blick durch die Kamera des Endgerites
angezeigt, hier werden nach Erkennen des Trackers auch die 3D-Modelle dargestellt und bewegt.

Abbildung 4.19: Die Prisentationsansicht des Presenters.

In der oberen linken Bildschirmecke befindet sich ein kleines Informationsfenster. Fiir den
Presenter werden hier seine IP-Adresse und der gewihlte Port angezeigt, so dass er diese In-
formationen an die Clients weitergeben kann. Zusitzlich wird ihm die Anzahl der verbundenen
Nutzer angezeigt sowie eine Riickmeldung, wihrend ein Modell per Netzwerk an einen Client
iibertragen wird. Dem Spectator wird hier stattdessen angezeigt, dass er korrekt mit einem Server
verbunden ist. Der einzige Button ist der Meniibutton in der unteren rechten Ecke. Ein Tap auf
diese Schaltfliche mit dem Einstellungssymbol fihrt das Menii von der Seite herein oder blendet
es wieder aus. Abbildung 4.20 zeigt das ausgeklappte Menii mit seinen vier Buttons. Sie bieten
von links nach rechts folgende Funktionen:

Abbildung 4.20: Das aufgeklappte Menii der Prisentationsansicht eines Presenters.

44

4 IMPLEMENTIERUNG DES PROTOTYPS 4.5 Frontend

e Load: Dieser Button ist zum Laden eines Modells vorgesehen, bei einem Spectator wird
er nicht angezeigt, da er den Ladebefehl vom Server (Presenter) iibermittelt bekommt. Das
nach Tap geoffnete Fenster zeigt den Modellbrowser, aus welchem das gewiinschte Modell
aus den AssetBundles in die Hauptszene geladen werden kann (siehe Abbildung 4.21). Ein
Textfeld am oberen Rand des Bildschirm zeigt den Dateipfad an, aus welchem die Daten ge-
lesen werden. AssetBundles miissen an diesen Ort kopiert werden. Dabei handelt es sich um
den Ordner ARModels auf der SD-Speicherkarte beziehungsweise dem internen Speicher
des mobilen Endgerits. Da die Daten beim Erstellen einer Session eingelesen werden gibt es
einen Reload-Button in der unteren linken Ecke, um den Einlesevorgang manuell erneut zu
starten, falls zur Laufzeit AssetBundles verdndert wurden. In der rechten unteren Ecke befin-
det sich die Close-Schaltflache zum Schlieen des Modellbrowsers. Die Anzeige der in den
Bundles gefundenen Prefabs ist scrollbar und passt sich dynamisch der Anzahl an Model-
len an. Die einzelnen Modellbuttons zeigen den Namen des Prefabs sowie ein Vorschaubild,
sofern dieses vor dem Export aus Unity per Thumbnail-Script festgelegt wurde. Wurde kei-
nes definiert wird ein Standardbild, ein griiner Wiirfel dargestellt. Nachdem eine Auswahl
getroffen und per Tap eingegeben wurde, wird ein Loading Model...-Informationsfenster an-
gezeigt, um dem User iiber den Ladevorgang Feedback zu geben. Der Modellbrowser wird
anschlieBend selbststindig geschlossen und gibt wieder den Blick auf die Prdsentationsan-
sicht frei.

epm— -

LOAD MODEL FROM ASSET BUNDLE

From /storage/emulated/O/ARModels

Interactions MatTest Multilnteraction shadowtest

Reload

Abbildung 4.21: Der Modellbrowser nach Tap auf Load.

e Scale: Ein Tap auf diesen Button 6ffnet oder schlieft den Scale-Slider (siehe Abbildung
4.22). Mit ihm kann das Modell als Ganzes skaliert werden. Die GesamtgréBe wird nicht
iiber das Netzwerk an alle Nutzer iibertragen, da diese Einstellung dazu gedacht ist, das
komplette Modell an seine eigene Bildschirmgrée oder Priaferenz anzupassen. Aufgrund
dessen ist die Schaltfliche bei Presenter sowie Spectator zu finden. Zusétzlich findet sich
hier der Automatic-Button, der die Gesamtausmale der Geometrie ermittelt und das Modell
so skaliert, dass es den gesamten Tracker fiillt. Diese Funktion wird auch stets automatisch
beim Laden eines Modells ausgefiihrt.

45

4.5 Frontend 4 IMPLEMENTIERUNG DES PROTOTYPS

46

—

Scale

Abbildung 4.22: Der Scale-Slider.

o Toggle Icons: Mithilfe dieser Schaltfliche konnen die Interaktionsicons aktiviert und deak-

tiviert werden. Diese werden auf den manipulierbaren Objekten angezeigt und folgen ihnen
stets in passender GroBe, so dass der Nutzer erkennen kann, welche Aktion er bei welchem
Objekt ausfithren kann (sieche Abbildung 4.23). Alle vier Moglichkeiten der Manipulati-
on (Transformation, Rotation, Skalierung und Materialwechsel) besitzen ein eigenes leicht
erkennbares Symbol. Erlaubt ein einzelnes Objekt mehrere Interaktionsarten gleichzeitig,
werden die entsprechenden Icons vertikal untereinander angeordnet angezeigt. Die Interak-
tionsicons sind nur bei dem Presenter sinnvoll, weshalb auch nur er die Schaltfliche sehen
kann.

N ol

Toggle lcons

Abbildung 4.23: Die Interaktionsicons.

e Exit: Der letzte Button dient dem Verlassen der Session. Im Falle des Presenters wird die

Session beendet und alle Teilnehmer finden sich in ihrem Hauptmenii wieder. Verlisst ein
Spectator iiber diese Schaltfliche die Session, wird lediglich seine eigene Verbindung zum
Server unterbrochen und nur er wird in das Hauptmenii geleitet. Dem Presenter wird das
durch Dekrementieren der Clientanzahl in seinem Informationsfenster im Hauptbildschirm
oben links angezeigt.

4 IMPLEMENTIERUNG DES PROTOTYPS 4.6 Schwierigkeiten bei der Umsetzung

Wihrend der Dateiiibertragung beim Senden eines AssetBundles vom Server zum Client wird
dem Spectator das in Abbildung 4.24 gezeigt Informationsfenster gezeigt, um ihn nicht iiber den
Fortschritt im Unklaren zu lassen. Das Popup enthélt einen sich fiillenden Ladebalken, eine Anzei-
ge der bereits iibertragenen Megabyte neben der zu transferierenden Gesamtgrofie der Datei sowie
den Namen des AssetBundles. Nach erfolgreicher Ubertragung schlieBt sich das Fenster wieder
und das Modell wird angezeigt.

RECEIVING ASSET FROM SERVER
please stand by..

216 | 9.99 MB

models

Abbildung 4.24: Das Fortschrittsinformationsfenster beim Empfangen eines AssetBundles.

4.6 Schwierigkeiten bei der Umsetzung

Dieser Abschnitt enthélt eine Erlduterung der wihrend der Entwicklung aufgetretenen gro3en Pro-
bleme und wie sie gelost wurden. Die grofiten Schwierigkeiten zeigten sich bei der Umsetzung der
Touchbedienung sowie den komplexen Netzwerkfunktionen mit dynamisch ladbaren Modellen.

4.6.1 Touchbedienung

Da der Nutzer die Moglichkeit haben sollte, bestimmte Objekte auf dem Endgerét zu manipulie-
ren, war es notwendig, eine gut funktionierende Touchbedienung zu implementieren. Erste An-
sétze verzichteten auf die Verwendung vom externen Bibliotheken und nutzen nur die Bordmittel
Unitys. Unity liefert eine grundlegende Erkennung von Touches, so zum Beispiel Beginn, Bewe-
gung und Ende einer Eingabe. Zuriickgegeben werden die Bildschirmkoordinaten, also an welcher
Stelle der Bildschirm beriihrt wurde. Davon ausgehend kann ein Raycast geschossen werden, ein
Strahl der von diesem Punkt aus, abhidngig von der Kamera, perspektivisch korrekt durch die
dreidimensionale Szene geschickt wird. Uberschneidungen mit 3D-Modellen werden erkannt und
dementsprechend konnen Aktionen ausgefiihrt werden.

Die Umsetzung von komplizierteren und beschrinkten Gesten, wie es bei dieser Anwendung
notwendig war, ist so zwar prinzipiell moglich, die Implementierung von Grund auf ist allerdings
nicht sinnvoll. Vor allem die Einschriankung der erlaubten Bewegungsbereiche durch die Positio-
nen oder Namen der in der Objekthierarchie verwendeten leeren Objekte ist nicht trivial, ebenso
die korrekte Berechnung von Zielpositionen abhingig von der Sicht auf die Szene. Objekte im
dreidimensionalen Raum sollten nur auf einer Ebene, also zwei Achsen bewegt werden, drei Ach-
sen lassen sich durch lediglich eine raumliche Ansicht nicht mehr kontrollieren. Diese Ebenen
liegen jedoch nicht immer plan in der Szene auf Weltachsen sondern kénnen auch geneigt sein,
was eine zusitzliche Schwierigkeit darstellte. Es gibt diverse externe Unity-Libraries, welche nach
Import in ein Projekt diverse Grundinteraktionen bereitstellen. Auf dieser Grundlage kann weiter

47

4.6 Schwierigkeiten bei der Umsetzung 4 IMPLEMENTIERUNG DES PROTOTYPS

aufgebaut werden, die enthaltenen Skripte konnen verdndert und erweitert werden, um sie den
eigenen speziellen Anforderungen anzupassen.

Die Verwendung der TouchScript-Library erwies sich als gute Wahl. Die grundlegende An-
wendung und Konfiguration wurde bereits in 4.4.2 Touchbedienung mit TouchScript erlautert. Das
Versehen von Modellen mit einfachen Interaktionen ist komfortabel und simpel. Fiir den Prototyp
waren jedoch einige Anpassungen notwendig:

o Aufteilen der Grundtransformationen: Objekte die manipulierbar sein sollen, miissen ein

1
2
3
4
5

6

g

48

Gesture Script besitzen. Davon gibt es verschiedene Versionen, fiir die meisten Transforma-
tionen eignet sich das Transform Gesture Script (siehe Abbildung 4.25). In diesem kann
unter Projection Type die Projektionsebene der Bewegung definiert werden. Es gibt die
Auswahlmoglichkeiten Layer (Ebene frontal zur Kamera gerichtet), Object (Ebene abhén-
gig von der Orientierung des Objekts) und World (Ebene abhiingig von den Weltkoordina-
ten). Mochte man auf einem Gameobject mehrere Transformationen gleichzeitig erlauben,
konnte man mit wenig Aufwand einfach alle Auswahlhaken des Transform Types aktivie-
ren. Fiir den Prototyp ist das nicht anwendbar. Durch die Beschrinkungen auf bestimmte
Transformationsachsen tiber die Objekthierarchie muss fiir jede Grundinteraktion eine Un-
terscheidung stattfinden. Das Objekt erhélt also per Code beim dynamischen Ladevorgang
fiir Translation, Rotation und Skalierung ein eigenes Gestenskript mit speziell angepassten
Projektionseinstellungen. Translationen sind auf die Layer-Ebene eingestellt, Rotation und
Skalierung besitzen hingegen den Projection Type Object. Die Normale der Ebene wird hier-
bei wihrend des Ladens anhand des Namens des leeren Transformationsunterobjekts (Name
enthilt die erlaubten Achsen) berechnet und angepasst. Da sich nun mehrere Gestenskripte
auf einem einzigen Objekt befinden, miissen sie schlieBlich noch gegenseitig als friendly
definiert werden, um sich nicht zu behindern. Das Problem der Projektionsebenen ist damit
gelost, die Einschriankung der Bewegung noch nicht.

Abbildung 4.25: Das Transform Gesture Script

Einschrinken der Translation: Da es nur erlaubt sein sollte, Objekte zwischen den iiber die
leeren Unterobjekte definierten Positionen zu bewegen, wurden Anpassungen im Code der
TouchScript-Skripte selbst notwendig. Das Transform Gesture Script regelt die Berechnung
der Zielkoordinaten einer Interaktion und schlieflich die Versetzung des Objekts. Um die
Bewegung zu beschrinken, muss also an dieser Stelle eingegriffen werden. Der folgende
Code wurde kurz vor Anwendung der Bewegung eingefiigt und beeinflusst die Berechnung
der Zielposition, er ist leicht vereinfacht dargestellt:

if (DeltaPosition != Vector3.zero) {
// Erlaubter Start— und Endpunkt der Bewegung
Vector3 startPos = object.startGo.position;

Vector3 goal = object.goalGo.position;

// Projezierter Zielpunkt des Objekts auf einer

// Geraden durch Start— und Endpunkt

Vector3 projectedLocalPoint = Vector3.Project((object.position +
DeltaPosition) — startPos , goal — startPos);

//Und in globalen Koordinaten

Vector3 projectedPoint = projectedLocalPoint + startPos;

4 IMPLEMENTIERUNG DES PROTOTYPS 4.6 Schwierigkeiten bei der Umsetzung

11
12
13
14
15
16
17
18
19
20
21
22

4.6.2

// Distanz zwischen Start— und Endpunkt

float dist_start_goal = Vector3.Distance(startPos, goal);

//Distanz zwischen Ziel— und Endpunkt

float dist_point_goal = Vector3.Distance(projectedPoint, goal);

// Distanz zwischen Start— und Zielpunkt

float dist_start_point = Vector3.Distance(startPos, projectedPoint);

if (dist_start_goal == dist_start_point + dist_point_goal) {
// Zielpunkt giiltig, versetze Objekt
object.position = projectedPoint;

}
}

Der Code nutzt zur Evaluation, ob der berechnete Zielpunkt zwischen den erlaubten Punkten
und nicht auBerhalb von ihnen liegt, die in Abbildung 4.26 dargestellten Zusammenhinge.
Auf diese Weise kann das manipulierbare Objekt nur auf einer Geraden zwischen dem vor-
her festgelegten Start- und Endpunkt verschoben werden und schieft nicht iiber sie hinaus.

B Distanz
= . o
- b -
L
Erlaubte Projezierte Erlaubte
Startposition Zielposition Endposition

Wenn a = b + ¢, dann liegt die Zielposition im dreidimensionalen
Raum auf einer Geraden zwischen Start- und Endposition

Abbildung 4.26: Hintergrund der Berechnung eines giiltigen Ziels

Unity UNET

Auch wenn Unity mit seinen UNet-Netzwerkfunktionen viele vorgefertigte und manchmal hilf-
reiche Skripte bietet, waren diese gleichzeitig die Quelle vieler Probleme. Die fertigen Elemente
arbeiten bei sehr genau definierten Situation durchaus praktikabel, sobald jedoch leichte Abwei-
chungen in Spielerverwaltung oder Anwendungsstruktur auftreten versagen sie hiufig ihren Dienst
oder erfiillen die Anspriiche an Performanz nicht mehr. In diesen Fillen ist man damit besser bera-
ten, die vorhandenen Skripte zu verdndern, zu erweitern oder auch komplett neu zu entwickeln. Im
Laufe der Implementierung des Prototyps war dies an zwei wichtigen Stellen notwendig, welche
sogar Teile Hauptfunktionen der Anwendung darstellen:

Beim Ubertragen der AssetBundles: UNet besitzt ein eigenes Nachrichtensystem, das ver-
wendet werden kann, um Informationen und Daten zwischen bestimmten Endpunkten zu
tibertragen. Sogar der QoS-Kanal lisst sich dabei selbst bestimmen, was ein positiver Aspekt
ist. QoS steht fiir Quality of Service und bestimmt, wie wichtig die korrekte Paketreihenfol-
ge oder das tatsidchliche Erreichen des Ziels sind. So gibt es Reliable (Paket erreicht auf
jeden Fall den Empfianger = langsamer) und Unreliable (Paket darf auf dem Weg verloren
gehen = schneller) Kanile. Diese gibt es zusitzlich jeweils noch in der Version Fragmen-
ted und Sequenced. Fragmented erlaubt groflere Nachrichten bis 32 Fragmente, Sequenced
sorgt dafiir, dass die Pakete auf jeden Fall in der korrekten Reihenfolge ihr Ziel erreichen,

49

4.6 Schwierigkeiten bei der Umsetzung 4 IMPLEMENTIERUNG DES PROTOTYPS

50

was die Ubertragung jedoch verlangsamt. Abbildung 4.27 zeigt die Ordnung der Kaniile. Es
muss also stets zwischen Geschwindigkeit und Zuverldssigkeit abgewogen werden.

Unreliable UnreliableFragmented UnreliableSequenced Reliable ReliableFragmented ReliableSequenced

-
Schnell Langsam
Unzuverlassig Zuverlassig

Abbildung 4.27: Die QoS-Kanile von UNet.

Fiir das einfache Mitteilen von kurzen Nachrichten ist das System komfortabel. Es eignet
sich jedoch keineswegs fiir die Ubertragung groBerer Datenmengen. Das zeigte sich bei den
ersten Ansitzen zum Ubermitteln der AssetBundles vom Server zu den Clients. Ein Pro-
blem dabei ist die Beschrinkung der Gréfe der einzelnen Nachrichten. Die zu sendende
Datei muss manuell in Blocke von passender GroBe aufgeteilt werden und auf der Gegen-
seite wieder korrekt zusammengesetzt werden. Die nichtfragmentierten Kanile erlauben
eine BlockgroBe von nur 1500 Bytes, die fragmentierten immerhin bis zu 64 Kilobytes, sie
werden dann intern in kleinere Pakete geteilt. Durch die Groe der Modelldaten inklusive
aller Texturen wird so eine sehr hohe Anzahl an einzelnen Nachrichten benétigt. Da jede
Nachricht zusitzlich einen Header enthilt, welcher weitere Informationen enthilt, fallt viel
Overhead (Daten, die nicht der Nachrichteninhalt selbst sind) an. Zudem muss jedes Pa-
ket auf Seiten des Senders und Empfingers einzeln bearbeitet werden, das heiflt in einen
Zwischenpuffer oder die Datei gespeichert werden. All dies kostet viel Zeit. Auch mit dem
schnellsten und ,,groften* QoS-Kanal UnreliableFragmented war die Dateniibertragung un-
abhingig vom Netzwerk selbst inakzeptabel unperformant.

Die schlieflich verwendete optimale Losung ignoriert das UNet-System und nutzt die klas-
sische TCP-Dateniibertragung. Die genaue Umsetzung mit Network- und Filestreams wurde
in 4.4.4 Netzwerkkommunikation erlautert. Der Ansatz zeigte sich als problemloser in der
Implementierung, da durch die Verwendung der Streams keine manuelle Fragmentierung
notwendig war, sowie um ein vielfaches schneller bei der Ubermittlung der Daten.

Bei der Synchronisation der manipulierbaren Objekte: Auch hier wurde zunéchst versucht,
die Unity-eigenen Netzwerkfunktionen zum Abgleich der Transformation zu nutzen. Damit
Gameobjects von UNet als netzwerkbeeinflusst erkannt werden, bendtigen sie das fertige
Network Identity Script. In diesem kann festgelegt werden, ob der Nutzer dieser Instanz
der Anwendung die Autoritit iiber das Objekt hat. Er gilt dann als Besitzer des Objekts
und darf es verdndern. Erhilt das Objekt zusétzlich ein Network Transform Script werden
die Verdanderungen auf seiner Seite automatisch an alle anderen Clients, welche nicht die
Autoritét besitzen, libertragen. Damit die Verbindung zwischen den Objekten an den ver-
schiedenen Endpunkten zustande kommt, muss es bei den Clients per Spawnbefehl vom
Server instanziiert werden. Nur dann weif} der Server, an welche Instanzen im Netzwerk er
die Updatebefehle schicken muss. Das Gameobject muss also schon bei der Kompilierung
der Anwendung in ihr verfiigbar sein und wird dann als spawnbares Objekt registriert. Der
Server sendet dann nur noch den Befehl zum Einfiigen dieses vorher registrierten Objekts
in die Spielwelt.

Da die Anwendung aber das dynamische Laden unterstiitzt sind die zu spawnenden Modelle
nicht von Anfang an verfiigbar. Die Zuordnung eines Objekts zu einem bestimmten Spawn-
befehl muss also manuell umgesetzt werden. Das geschieht bei dem Einlesen eines Modells
aus dem AssetBundle im InitObjects-Skript auf Clientseite mit den folgenden Pseudecode-
zeilen:

4 IMPLEMENTIERUNG DES PROTOTYPS 4.6 Schwierigkeiten bei der Umsetzung

W N =

10
11
12
13
14
15
16
17

18

// Eindeutiger Networkhashwert wird aus verschiedenen

// Eigenschaften des Modells erstellt.

NetworkHash128 nethash = NetworkHash128.Parse (loadedObject.name + "" +
loadedObject. position.x + "" + loadedObject.rotation.x + "" +
loadedObject.GetComponent<MeshFilter> ().mesh.vertexCount);

//Instanz des geladenen Objekts wird erstellt

GameObject instance =

(GameObject) Instantiate (loadedObject, loadedObject.position, Quaternion.
identity);

//und wird in einem Dictionary mit dem berechneten Hashwert als Schliissel
gespeichert
objectsDict.Add (nethash, instance);

//Das orignale Objekt wird aus der Szene geldscht, es wird spdter vom
// Server gespawnt
GameObject. Destroy (loadedObject);

// Ein SpawnHandler wird registiert, der bei Spawn— und Despawnbefehl
//des Servers die Methoden SpawnObject und UnspawnObject aufruft.
ClientScene . RegisterSpawnHandler (nethash, SpawnObject, UnspawnObject);

Die Methode SpawnObject sucht aus dem Dictionary (ein Worterbuch mit der Struktur
Schliissel -> Inhalt) das dem vom Server per Spawnbefehl gesendeten NetworkHash ent-
sprechende Gameobject heraus und versieht es mit dem selbstgeschriebenen SyncScript zur
Synchronisation des raumlichen Zustands. Dieses Skript wurde in 4.4.4 Netzwerkkommuni-
kation beschrieben. Das Object wurde nun korrekt gespawnt und die Verbindung zum Server
und damit der Abgleich der Daten steht.

Wie sich gezeigt hat ist UNet ein zweischneidiges Schwert. Einerseits erleichtert es dem Pro-
grammierer viele Dinge durch das Bereitstellen fertiger Skripte und Methoden, zum Beispiel fiir
den Aufbau von Sessions. So lassen sich schnell simple Netzwerkanwendungen entwickeln und
erste Ergebnisse produzieren. Es ist jedoch nicht ratsam, sich zu sehr auf die eingebauten Netz-
werkfunktionen zu fokussieren und zu verlassen. In einigen Fillen ist es in allen Aspekten effekti-
ver, sich den tieferleveligen Netzwerkfunktionen der Programmiersprache selbst zu bedienen und
die gewiinschten Funktionen von Grund auf zu implementieren.

51

4.6 Schwierigkeiten bei der Umsetzung 4 IMPLEMENTIERUNG DES PROTOTYPS

52

5 NUTZERSTUDIE

5 Nutzerstudie

Die Schattierungen der 3D-Modelle tragen einen sehr grolen Teil zur Glaubhaftigkeit der AR-
Welt bei. Wie im Kapitel 2 Stand der Technik dargelegt gibt es zwar Ansitze, die versuchen,
hochqualitative Echtzeitschatten und Lichteffekte wie globale Illumination umzusetzen, fiir mobi-
le Endgerite sind diese jedoch immer noch zu aufwendig und bei weitem nicht performant genug.
Dynamische zur Laufzeit berechnete Schatten erreichen auch heute nicht die Darstellungsquali-
tdt von vorberechneten gebackenen Schatten. Es ist also bei AR-Anwendungen stets notwendig,
zwischen hoher Qualitdt und Performanz der statischen Schatten und der geringeren Qualitdt und
Performanz aber dynamischen Anpassungsfihigkeit der Echtzeitschatten abzuwigen.

Um diese Entscheidung nicht bei jeder Entwicklung, vielleicht sogar mit aufwendigen Testldu-
fen, neu treffen zu miissen, wire es hilfreich, fiir bestimmte Anwendungsfélle Leitlinien zu haben.
Fiir manche Szenarien ist vielleicht die hohe Qualitdt der statischen Schatten gefragt, andere be-
ndtigen bewegliche Schatten falls es um Verdnderungen der Lichtsituation geht. In einigen Féllen
kann die Kombination der Ansitze der richtige Weg sein, in wiederum anderen haben die Schat-
ten wenig bis keinen Einfluss auf die Losbarkeit von bestimmten Aufgaben. Fiir diese Arbeit soll
genau dies anhand dieser Nutzerstudie herausgefunden werden. Der Fokus liegt dabei auf Anwen-
dungen im Bereich der Architekturvisualisierung, da dies ein perfekt geeignetes und weitldufiges
Feld fiir AR-Umsetzungen ist. Der erste Abschnitt beschreibt die Gedanken und Vorbereitungen
der Konzeptionsphase, gefolgt von den Details der Durchfiihrung. Im letzten Teil werden die ge-
sammelten Daten ausgewertet und iiberpriift, ob aufgestellte Hypothesen bestitigt oder widerlegt
werden konnten.

5.1 Konzeption

Im Folgenden wird die Vorbereitung der Nutzerstudie beschrieben und welche Uberlegungen im
Vorfeld getitigt wurden. Das beginnt bei der Wahl der entwickelten Szenarien, gefolgt von den
Methoden der Datenerhebung und schlieBlich werden die Hypothesen erléutert, die es zu iiberprii-
fen gilt.

5.1.1 Anwendungsfille

Im Laufe der Benutzerstudie sollten drei verschiedene Anwendungsfille iiberpriift werden. Jeder
deckt eine andere Moglichkeit ab, fiir die Augmented Reality im Bereich der Architektur sinnvoll
verwendet werden konnte. Fiir jedes dieser drei Szenarien musste ein eigenes 3D-Modell mit den
dazugehorigen gebackenen und ungebackenen Texturen erstellt werden. Jedes davon wurde in drei
Ausfiihrungen getestet: nur statische Schattierung, nur dynamische Schattierung und zuletzt eine
Kombination aus beidem. So sollten die Priferenzen der Nutzer im Bezug auf die Beleuchtung
ermittelt werden. Die gewdhlten Anwendungsfille sind die folgenden:

o Sonneneinstrahlung: Dieses Szenario ermoglicht es dem Nutzer, die Sonneneinstrahlung
auf einem Grundstiick wihrend des gesamten Tagesverlaufs zu beurteilen und damit die
Anordnung von gro3en Objekten auf selbigem sinnvoll zu gestalten. Oberhalb des Hauses
befindet sich eine Himmelsscheibe mit einer stilisierten Sonne. Diese Scheibe kann ge-
dreht werden. Die Sonne zeigt dem Nutzer vereinfacht, aus welcher Richtung der Strahl
des Tageslichts kommt. Ein gerichtetes Licht bescheint die Welt stets aus der iiber die Him-
melscheibe definierte Richtung. Bei der dynamischen Beleuchtung sind so die daraus resul-
tierenden dynamischen Schatten sichtbar. Die Aufgabe des Studienteilnehmers besteht nun
darin, die Objekte im Garten so zu verschieben, dass auf die Terrasse des Hauses im kom-
pletten Tagesverlauf moglichst wenig Schatten fallen. Abbildung 5.1 zeigt das Szenario.

53

5.1 Konzeption 5 NUTZERSTUDIE

Abbildung 5.1: Das Szenario Sonneneinstrahlung mit dynamischer Beleuchtung.

e Grundriss: Hier soll der Einfluss der Schatten auf die Beurteilungsfihigkeit eines Grund-
risses Uberpriift werden. Nach Laden des Modells sieht der Nutzer ein groes Haus. Das
Dach inklusive der oberen Etage kann abgehoben werden, sodass der Blick auf das Innere
frei wird. Im Erdgeschoss befindet sich ein Labyrinth. In einer Ecke ist der per Schrift-
zug definierte Start, in der diagonal gegeniiberliegenden Ecke befindet sich das Ziel. Der
Studienteilnehmer hat die Aufgabe, einzelne Winde innerhalb des Labyrinths so zu ver-
schieben, dass ein Pfad vom Start zum Ziel freigegeben wird. Das Haus mit angehobenem
Dach ist in Abbildung 5.2 dargestellt.

Abbildung 5.2: Das Szenario Grundriss.

54

5 NUTZERSTUDIE 5.1 Konzeption

e Materialitit: In dieser Szene ist die einzige Manipulationsméglichkeit das Austauschen von
Materialien. Abbildung 5.3 zeigt das Grundstiick dieses Anwendungsfalls. Per Tap kdnnen
die Materialien des Dachs, der Hauswand und der Terrasse durchgeschaltet werden. So ldsst
sich zum Beispiel zwischen einer Terrasse in Holzoptik oder zweierlei Steinarten wihlen.
Die Aufgabe des Studienteilnehmers ist hierbei, sich fiir ein Materialkombination zu ent-
scheiden, die seinem eigenen Geschmack am ehesten entspricht. Durch die drei verschie-
denen Beleuchtungseinstellungen lésst sich ermitteln, ob die Qualitdt der Schatten einen
Einfluss auf die Beurteilungsfiahigkeit von Oberflicheneigenschaften hat.

Abbildung 5.3: Das Szenario Materialitdit.

5.1.2 Nutzerbefragung

Um tiefere Einblicke in die Gedanken und Eindriicke der Teilnehmer zu erhalten ist ein Frage-
bogen Teil der Nutzerstudie. Nach erfolgreichem Losen eines Anwendungsfalles werden die ent-
sprechenden Fragen zeitnah beantwortet. Die Umfrage ist in vier groe Abschnitte unterteilt:

1. Hintergrund: Hier wird ermittelt, wie erfahren sich der Proband selbst im Umgang mit
Smartphones, Tablets und Augmented Reality einschitzt. Die Skala reicht in fiinf Punkten
von keine Erfahrung bis viel Erfahrung.

2. Anwendung allgemein: Fragen zur Erfahrung des Prototypen im Ganzen, unabhingig der
einzelnen Anwendungsfille. Hier werden zum Beispiel Aussagen getitigt wie ,,Es fiel mir
leicht, ein Modell zu laden* oder ,,Es fiel mir leicht, Objekte zu manipulieren*. Der Proband
gibt an, wie stark er den Aussagen zustimmt. Die Skala ist in fiinf Punkte unterteilt, von
stimmt nicht bis stimmt sehr.

3. Anwendungsfille: Dies ist der Hauptteil des Fragebogens. Er ist in die drei einzelnen An-
wendungsfille unterteilt. Jeder dieser Abschnitte ist wiederum in drei Unterkategorien un-
terteilt, eine fiir jede Art der Beleuchtung (statisch, dynamisch, gemischt). Fiir jede wird
ermittelt, wie leicht dem Teilnehmer die Aufgabe fiel und inwiefern er bei der Losung
durch die Schattierung irritiert oder unterstiitzt wurde. Bei der Version mit den kombinier-
ten Schatten wird dabei noch zwischen den statischen und dynamischen Schatten unter-
schieden. Getitigte Aussagen sind zum Beispiel ,,Die festen Schatten haben mich behin-

55

5.2 Durchfiihrung 5 NUTZERSTUDIE

dert” oder ,,Die bewegten Schatten haben mir geholfen®. Der Proband gibt an, inwiefern er
mit den Aussagen iibereinstimmt. Die Skala besteht aus fiinf Punkten von stimmt nicht bis
stimmt sehr. Die Reihenfolge der Anwendungsfille im Fragebogen lautet: Sonneneinstrah-
lung, Grundriss, Materialitit. Nach Bearbeiten jedes Szenarios hat der Nutzer die Moglich-
keit, aus den drei Beleuchtungsversionen einen Favoriten zu wihlen, sofern er sich fiir einen
entscheiden kann.

4. Demographie: Der Fragebogen endet mit dem Demographieteil. Hier wird Alter und Ge-
schlecht des Teilnehmers abgefragt.

Die komplette Nutzerbefragung besteht aus 46 Einzelfragen.

5.1.3 Hypothesen

Fiir die Nutzerstudie wurden drei Hypothesen aufgestellt, die mit den erhobenen Daten entweder
bestitigt oder widerlegt werden sollten. Sie beziehen sich auf den Einfluss bestimmter Beleuch-
tungsarten auf die Losbarkeit verschiedener Anwendungsfille.

1. Geht es um die Position des Schattenwurfs werden klare scharfkantige dynamische Schatten
préferiert.

2. Bei der Wahrnehmung eines Grundrisses spielt die Schattierung keine wichtige Rolle.

3. Bei der Beurteilung von Materialitiit bevorzugen Nutzer die hochqualitativen statischen
Schatten.

Werden sie verifiziert, konnen sie als Richtlinien fiir den zukiinftigen Einsatz verschiedener Schat-
tenarten verwendet werden.

5.1.4 Datenlogging

Zusitzlich zu dem Fragebogen wurden quantitative Daten iiber eine Loggingfunktion in der An-
wendung erhoben. Wihrend der Studie wurden im Hintergrund fiir jedes geladene Modell fol-
gende Informationen in einer Datei gespeichert: Datum und Uhrzeit, Name des geladenen Mo-
dells (entspricht Anwendungsfall), Anzahl der Touches und die Zeit, die der Proband fiir den
Anwendungsfall benétigt hat. Ein Eintrag in die Logdatei sieht wie folgt aus: 2016_07_06_Wed-
nesday_14_26_43_Model:_Material_gemischt_Touches:_33_Time Loaded:_01:35. Mithilfe die-
ser Daten lassen sich eventuell zusitzliche Informationen gewinnen.

5.2 Durchfiihrung

Die Nutzerstudie wurde iiber einen Zeitraum von zwei Wochen durchgefiihrt, an ihr nahmen ins-
gesamt 20 Probanden teil (die genaue Zusammensetzung folgt in der Auswertung unter 5.3.1 De-
mographie und Hintergrund). Der Versuchsaufbau war unkompliziert und leicht transportabel, da
lediglich ein Platz an einem Tisch sowie ein ausgedruckter Tracker und ein mobiles Endgerit
benotigt wurden. Als 2D-Tracker wurde aufgrund des thematischen Bezugs die Grundrisszeich-
nung eines Hauses verwendet. Das Motiv ist in Abbildung 5.4 zu sehen und wurde auf einem
Papier in DIN A4-Gro8e ausgedruckt. Das Versuchsgerit war eines der bereits in der Entwicklung
verwendeten Nvidia SHIELD K1 Tablets. Per zufillig iiber die Website random.org generierter
Zahlensequenz wurde bei jeder Durchfiithrung die Bearbeitungsreihenfolge der Anwendungsfille
festgelegt. Dadurch wurde verhindert, dass die erste Aufgabe einer festen Reihenfolge im Frage-
bogen stets am schwierigsten zu 16sen ist, da der Proband mit der Anwendung noch nicht vertraut
ist. Um diesen Effekt zusitzlich abzuschwichen und erste Beriihrungsédngste zu nehmen, wurde
wertungsfrei zu Beginn das Modell Interaktionsspielplatz geladen, um dem Teilnehmer die Grund-
lagen der Augmented Reality App an sich ndherzubringen.

56

5 NUTZERSTUDIE 5.3 Auswertung

ol
L

/
=

Abbildung 5.4: Der in der Nutzerstudie verwendete Tracker. Das Firmenlogo unten rechts wurde
aus Lizenzgriinden in dieser Abbildung unkenntlich gemacht.

5.3 Auswertung

Im Zuge der Auswertung wurden alle Fragebdgen in einem Microsoft Excel-Dokument digitali-
siert. Auf diese Weise lielen sich weitere Operationen auf den Daten ausfiithren und somit eine
statistische Auswertung durchfiihren. Die ermittelten Ergebnisse werden in den nun folgenden
Abschnitten erléutert.

5.3.1 Demographie und Hintergrund

An der Durchfiihrung der Studie nahmen 20 Probanden teil. Der jiingste Teilnehmer war 21 Jah-
re alt, der élteste 60. Der Altersdurchschnitt betrug 29,2 Jahre. EIf davon waren weiblich, neun
maénnlich.

B Smartphones mTablets m Augmented Reality 13

Anzahl an Probanden

1 2 3 4 5

Keine Erfahrung Viel Erfahrung

Abbildung 5.5: Erfahrungshintergrund der Probanden.

Der Grofteil der Nutzer schitzte seine Erfahrung mit Smartphones sehr hoch ein. 65% gaben
an, viel Erfahrung mit ihnen zu haben. Der Rest ordnete sich eher mittig ein mit leichter Nei-

57

5.3 Auswertung 5 NUTZERSTUDIE

gung in Richtung viel Erfahrung. Niemand gab an, sich mit einem Smartphone iiberhaupt nicht
auszukennen. Anders stellte es sich bei Tablets dar. Hier war die Verteilung ausgeglichener, der
grofite Teil, ndmlich 40%, schitze seine Erfahrung mit diesen Endgeriten durchschnittlich ein.
Alle anderen verteilten sich relativ ausgewogen mit leichtem Schwerpunkt bei iiberdurchschnitt-
licher Erfahrung. Bei Augmented Reality zeigte sich die Verteilung grob gegensitzlich zu den
Ergebnissen bei Smartphones, war jedoch etwas ausgeglichener. 35% der Teilnehmer gaben an,
keinerlei Erfahrungen mit Augmented Reality zu haben. Die Anzahl sinkt in Richtung Ende der
Skala ab, mit einer kleinen Spitze kurz vor viel Erfahrung. Abbildung 5.5 zeigt die Verteilungen
ibersichtlich und leicht vergleichbar in einer einzigen Grafik.

5.3.2 Anwendung allgemein

In dem Teil Anwendung allgemein des Fragebogens wurde die allgemeine Usability des Prototypen
iberpriift. Die gestellten Fragen zielten nicht auf bestimmte Anwendungsfille ab sondern auf die
Funktionen, die auf die Bearbeitung aller Aufgaben Einfluss hatten, wie zum Beispiel das Laden
eines Modells oder die Freude an der Benutzung allgemein. Die Ergebnisse der Auswertung sind
in Abbildung 5.6 dargestellt.

Insgesamt fiel die Beurteilung der Tester sehr positiv aus, der Schwerpunkt der Antworten
befindet sich auf der zustimmenden Seite der positiven Aussagen. Besonders gut angenommen
wurde die Modellladefunktion iiber den eingebauten Objektbrowser. 75% der Studienteilnehmer
fiel es uneingeschrénkt leicht, ein Modell zu laden. Die restlichen 25% ordneten sich nur knapp
darunter ein. Ahnlich verhielt es sich bei dem SpaB, den die Benutzung der Anwendung verur-
sacht hat, auch hier gab der GroBteil die positivste Antwort. Leichte Probleme zeigten sich bei
der Erkennung der moglichen Interaktionen. Trotz der einblendbaren Interaktionsicons auf den
manipulierbaren Objekten gaben immerhin 25% der Probanden an, der Aussage ,,Ich habe Inter-
aktionen leicht erkannt* nur mittelmdf3ig zustimmen zu konnen. Ein Grund hierfiir konnte sein,
dass die Objekte stets nur auf einer vordefinierten Geraden verschoben werden konnten, wobei die
Richtung der erlaubten Bewegung fiir einige Teilnehmer nicht direkt ersichtlich war und erst durch
Probieren herausgefunden werden musste. Zusétzlich versuchten drei Probanden fiir eine Mani-
pulation nur die Icons selbst zu berithren und nicht die komplette Geometrie des beweglichen
Objekts. Keinmal wurden die positiven Aussagen iiber die Usability der Anwendung komplett
abgelehnt.

stimmt stimmt stimmt stimmt stimmt
nicht wenig mittelmaRig ziemlich sehr
Es fiel mir leicht, ein Modell zu laden 0 0 0 5
Das Tracking funktionierte zuverlassig 0 0 0 12
Ich habe Interaktionen leicht erkannt 0 1 5 12 2
Es fiel mir leicht, Objekte zu manipulieren 0 1 3 11
Es hat mir SpaR gemacht, die App zu benutzen 0 0 1 8 11

Abbildung 5.6: Die allgemeinen Usabilityergebnisse. Die Zahlen entsprechen der Anzahl der Pro-
banden.

Zusitzlich zu den allgemeinen Fragen wurde zu jedem Anwendungsfall ermittelt, wie leicht
den Probanden die gestellte Aufgabe fiel. Fiir die Auswertung wurden alle Antworten der Un-
terszenarien der Beleuchtung zusammengezdhlt um eine Aussage iiber den Anwendungsfall an
sich treffen zu konnen. Der Anwendungsfall Sonneneinstrahlung erwies sich als der schwierigste.
30% der Antworten stimmten der Aussage, dass die Aufgabe leicht fiel nur mittelmdfig zu, 38,3%
ziemlich und der drittgrofite Teil von nur 21,7% sehr. Die anderen beiden Szenarien waren jedoch
von den Nutzern sehr gut 16sbar. Bei 88,3% der Antworten zum Grundriss wurde die ,,Bestnote*

58

5 NUTZERSTUDIE 5.3 Auswertung

vergeben, bei der Materialitit waren es 83,3%. Die drei ablehnensten Antwortmoglichkeiten wur-
den bei beiden Fillen keinmal gewdhlt. Insgesamt lédsst sich also feststellen, dass die gestellten
Arten von Aufgaben mithilfe des Prototyps gut losbar waren.

5.3.3 Hypothesen

Um die aufgestellten Hypothesen zu bestitigen oder zu widerlegen wurde der Hauptteil der Nut-
zerbefragung ausgewertet. Jede der Hypothesen steht fiir einen Anwendungsfall, weshalb fiir die
Uberpriifung die Ergebnisse des entsprechenden Szenarios herangezogen werden:

1. Anwendungsfall Sonneneinstrahlung: Geht es um die Position des Schattenwurfs werden
klare scharfkantige dynamische Schatten priferiert.

Um diese Aussage zu iiberpriifen wurde zunichst der Einfluss der statischen Schatten auf die
Losbarkeit der Aufgabe als Ganzes untersucht. Dazu wurden die Ergebnisse der Version mit
rein statischen Schatten mit ihrer Bewertung im kombinierten Szenario zusammengezihlt,
die Anzahl der Antworten betrdgt so jeweils 40 pro Frage. Daraus ergibt sie die Wirkung
auf den kompletten Anwendungsfall. Abbildung 5.7 zeigt die gegebenen Antworten der

Probanden:
32
1T i
7
: . L.
2
. M-

stimmt stimmt wenig stimmt stimmt ziemlich stimmt sehr
nicht mittelmaRig

2R NN W W
o o v 6 »

Anzahl der Antworten

w

o

m Die festen Schatten haben mich behindert

m Die festen Schatten haben mir geholfen

Abbildung 5.7: Die Einschétzungen der statischen Schatten im Anwendungsfall Sonnenein-
strahlung.

Wie man sieht, wurde in 80% der Antworten angegeben, dass die festen Schatten bei der
Losung der Aufgabe nicht geholfen hitten. Die Antworten auf die Frage, ob die Schatten
bei der Losung gestort hitten sind nicht so eindeutig, sie sind relativ breit verteilt. Jeweils
elfmal wurde hier stimmt mittelmdf3ig und stimmt ziemlich gewidhlt. Ganz anders ist das Bild
bei den dynamischen Schatten:

35 33
30
25
20
15
10
5 0 - 1

0
stimmt stimmt wenig stimmt stimmt ziemlich stimmt sehr

nicht mittelmaRig

Anzahl der Antworten

H Die bewegten Schatten haben mich behindert

m Die bewegten Schatten haben mir geholfen

Abbildung 5.8: Die Einschitzungen der dynamischen Schatten im Anwendungsfall Sonnen-
einstrahlung.

59

5.3 Auswertung 5 NUTZERSTUDIE

77,5% der Antworten stimmen uneingeschridnkt zu, dass die dynamischen Schatten der Lo-
sung des Anwendungsfalls zutrdglich sind. 33 von 40 mal wurde die Aussage, dass die
Schatten eine Behinderung wiren stark abgelehnt. Ebenso eindeutig zeigt sich die Wahl des
Favoriten dieses Szenarios, dargestellt in Abbildung 5.9. Ganze 90% wiéhlten die Version
mit der rein dynamischen Beleuchtung als ihren Favoriten. Die Hypothese ist somit wahr,
fiir diesen speziellen Anwendungsfall eigneten sich die dynamischen Schatten am besten.

1 0

m Gebacken
W Dynamisch
Kombiniert

H Keiner

18

Abbildung 5.9: Die Favoritenwahl des Anwendungsfalls Sonneneinstrahlung.

2. Anwendungsfall Grundriss: Bei der Wahrnehmung eines Grundrisses spielt die Schattie-
rung keine wichtige Rolle.

Betrachtet man die Antworten der Studienteilnehmer zu diesem Anwendungsfall wird
schnell ein Muster sichtbar. Abbildung 5.10 zeigt dies fiir alle Schattenarten dieses Sze-
narios in der Ubersicht. Wieder wurden die Antworten der einzelnen Ausarbeitungen des
Modells kombiniert, um Aussagen iiber die Gesamtwirkung einer Beleuchtung titigen zu
konnen. Auf den ersten Blick wird ersichtlich, dass sich der GroBteil der Antworten bei
stimmt nicht findet. Die Behauptungen, dass beiderlei Schattenarten den Probanden bei
der Losung dieses Anwendungsfalls behindern oder unterstiitzen wiirden, wurden von der
Mehrheit klar abgelehnt. Daraus folgt, dass die Hypothese wahr ist. Egal welche Schatten
eingesetzt wurden, sie hatten keinen groen Einfluss auf die Wahrnehmung des Labyrinths
und die Findung eines Wegs hindurch.

0 H Die festen Schatten haben mich behindert
34
35 M Die festen Schatten haben mir geholfen
30 i Die bewegten Schatten haben mich behindert
c
2 Die bewegten Schatten haben mir geholfen
9 25 23
E
c
T 20
(]
©
_F-E 15
c
=
5
5
0 0 0 O
0
stimmt stimmt wenig stimmt stimmt ziemlich stimmt sehr

nicht mittelmaRig

Abbildung 5.10: Die Antworten zum Einfluss der Schatten des Anwendungsfalls Grundriss.

60

5 NUTZERSTUDIE 5.3 Auswertung

Der geringe Unterschied in der Wahrnehmung der Studienteilnehmer wird von der Wahl
des Favoriten bestitigt, die Ergebnisse sind in 5.11 dargestellt. 35% konnten sich nicht fiir
einen Favoriten entscheiden. Die restlichen Nutzer entschieden sich relativ gleichmaBig ver-
teilt zwischen dem dynamischen (35%) und dem kombinierten (25%) Ansatz. Nur einer
praferierte die rein gebackene Beleuchtung mit der Begriindung, dass die Schatten besser
aussdhen.

m Gebacken
m Dynamisch
Kombiniert

M Keiner

Abbildung 5.11: Die Favoritenwahl des Anwendungsfalls Grundriss.

3. Anwendungsfall Materialitit: Bei der Beurteilung von Materialitit bevorzugen Nutzer
die hochqualitativen statischen Schatten.

Werden die Antworten auf die Fragen dieses Szenarios nach dem selben Verfahren wie bei
vorheriger Hypothese ausgewertet, fallen sofort die Ahnlichkeiten auf. Abbildung 5.12 stellt
diese dar. Wieder war der Einfluss der Schatten insgesamt sehr gering. Besonders auffillig
ist die sehr hohe Ablehnung der Aussage ,,Die festen Schatten haben mich behindert* von
95%. Die selbe Feststellung wird fiir die dynamische Beleuchtung mit 87,5% abgelehnt.
Zwar fand auch der GroBteil beide Schattenarten nicht hilfreich, insgesamt werden sie je-
doch stérker fiir hilfreich erachtet als stérend. Die Werte sind dabei fiir beide Ansétze sehr
ausgeglichen, es gibt keine nennenswerten Unterschiede. Anhand des Einflusses auf die
Problemldsung lésst sich also keine eindeutige Aussage fiir oder gegen bestimmte Schatten-
typen treffen, die Schatten werden nur allgemein fiir hilfreicher empfunden als behindernd.

40 38 m Die festen Schatten haben mich behindert
35 35 m Die festen Schatten haben mir geholfen
Die bewegten Schatten haben mich behindert

30
é Die bewegten Schatten haben mir geholfen
o
= 25
=
< 20
(9]
s
-E 15
c
< 10 7

4 4
> 2 2
0 . 0 0 00
0 |
stimmt stimmt wenig stimmt stimmt ziemlich stimmt sehr
nicht mittelmaRig

Abbildung 5.12: Die Antworten zum Einfluss der Schatten des Anwendungsfalls Materiali-
tdt.

61

5.3 Auswertung 5 NUTZERSTUDIE

Etwas klarer werden die Priferenzen jedoch beim Blick auf die Favoritenverteilung (siche
Abbildung 5.13). Der Grofteil der Probanden von immerhin 45% zieht die Ausarbeitung
mit den gebackenen Schatten vor, einige Male wurden Aussagen getitigt wie ,,[...] weil es
am schonsten aussah® oder ,,das war am realistischsten®. Ein relativ hoher Anteil von 30%
hatte keine Priferenz, nur einmal wurde die dynamische Version gewihlt. Die Hypothese
ldsst sich also nur teilweise bestiitigen. Auf die Beurteilung der Materialitit direkt hatte
die Schattenart keinen sehr starken Einfluss, wegen der Optik wurde sie insgesamt trotzdem
préferiert.

m Gebacken
m Dynamisch
Kombiniert

M Keiner

Abbildung 5.13: Die Favoritenwahl des Anwendungsfalls Materialitiit.

5.3.4 Datenlogging

Damit die im Laufe der Studie im Hintergrund gesammelten quantitativen Daten korrekt ausge-
wertet werden konnten, mussten die Logdateien zunéchst ebenfalls in eine Microsoft Excel-Tabelle
iibertragen werden. Anschliefend mussten die Daten gesdubert werden. Eintrédge, bei denen ein
nicht der Studie zugehoriges Modell geladen wurde mussten entfernt werden, ebenso wie die Fl-
le, in denen ein Modell zu kurz geladen war, da ein falsches Modell ausgewéhlt wurde oder der
Prototyp sich selbst beendet hatte. Zuletzt musste noch eine Fallunterscheidung zwischen den ein-
zelnen Anwendungsfillen und ihren drei Unterkategorien durchgefiihrt werden. So ergaben sich
die in Abbildung 5.14 dargestellten Werte.

Anwendungsfall Sonneneinstrahlung Grundriss Materialitat

Ausfihrung statisch dynamisch kombiniert statisch dynamisch kombiniert statisch dynamisch kombiniert
Anzahl der Touches (@) 14,6 28,2 20,7 13,3 13,3 14,9 13,4 23,4 23,6
Zeit zum Lbsen (in Minuten) 0:59 1:40 1:24 0:32 0:36 0:47 0:41 0:48 0:52

Abbildung 5.14: Die Ergebnisse des Datenloggings.

Betrachtet man den Anwendungsfall Sonneneinstrahlung mit den Informationen aus der Aus-
wertung des Fragebogens im Hinterkopf, fillt auf, dass bei der statischen Version die Zahl der Tou-
ches sowie die Bearbeitungszeit am geringsten war, obwohl sie den Probanden am schwierigsten
fiel. Die grof3ten Werte findet man bei der dynamischen Beleuchtung, obwohl diese die bevorzugte
und am besten angenommene war. Diese Gegebenheit ldsst sich wahrscheinlich dadurch erkliren,
dass die Nutzer an den dynamischen Schatten am meisten Freude hatten, sich deshalb ldnger mit
dem Szenario beschiftigten und versuchten, die Aufgabe so gut wie moglich zu 16sen. Denn die
hier gemessene Zeit kam nicht deshalb zustande, dass die Aufgabe mit den dynamischen Schatten
schwer zu 16sen gewesen sei — eher ist das Gegenteil der Fall.

62

5 NUTZERSTUDIE 5.3 Auswertung

Die fiir den Anwendungsfall Grundriss bereits durch den Fragebogen ermittelte Ausgegli-
chenheit der Beleuchtungsmethoden zeigt sich auch hier, die aufgestellte Hypothese wird durch
die Logdateien erneut bestitigt. Die durchschnittliche Anzahl an Touches ist extrem gleichméiBig
verteilt. Auch bei der Bearbeitungszeit zeigt sich bei den beiden Extremen, statische und dynami-
sche Schatten, kein nennenswerter Unterschied.

Bei der Materialitdt zeigt sich die bei der Auswertung schon festgestellte Ausgeglichenheit bei
der sehr dhnlichen Bearbeitungszeit. Die wenigsten Touches wurden bei der statischen Beleuch-
tung bendtigt, welche auch die Priferenz der Probanden darstellt. Die anderen beiden Ansétze,
die dynamischen und die kombinierten Schatten, liegen mit 23,4 und 23,6 Berithrungen im Mittel
extrem nah beieinander.

Insgesamt stiitzen die quantitativen Logdaten die durch Nutzerbefragung gewonnenen Er-
kenntnisse und Aussagen.

63

5.3 Auswertung 5 NUTZERSTUDIE

64

6 FAZIT

6 Fazit

6.1 Zusammenfassung

In diesem Teil werden die Erkenntnisse, die im Laufe der Arbeit gewonnen wurden, kurz und
priagnant zusammengefasst. Der Abschnitt teilt sich in die Erfahrungen mit dem Prototyp an sich,
wie erwdhnenswerte Probleme oder Auffassung durch die Nutzer und in die Ergebnisse der durch-
gefiihrten Studie in Bezug auf die Wahl der optimalen Beleuchtungsart fiir die getesteten Anwen-
dungsfille.

6.1.1 Prototyp

Die Umsetzung des Prototyps zeigte sich als zeitaufwendige und komplexe, jedoch belohnende
und lehrreiche Aufgabe. Im Laufe der Implementierung und Auswertung sind einige Dinge auf-
gefallen und im Gedichtnis geblieben.

Zum einen ist es heutzutage kein Hexenwerk mehr, selbststindig Augmented Reality Anwen-
dungen zu erstellen. Durch die leichte Zugénglichkeit von Entwicklungsumgebungen, wie Unity,
die direkt den Export als mobile Anwendung erlauben, ist es relativ einfach geworden, Apps fiir
verschiedenste Plattformen zu erstellen.

Das grofle Angebot an AR-Frameworks hilt fiir fast jede gewiinschte Programmierumgebung
APIs oder Plugins bereit. Das AR-Tracking mit Vuforia funktioniert erstaunlich zuverldssig und
bietet eine groe Auswahl an Trackingverfahren und Anpassungsméglichkeiten. Bei der Zugéing-
lichkeit und Robustheit hat sich hier allgemein in den letzten Jahren sehr viel getan.

Ahnlich verhilt es sich mit der Touchgestenbedienung von Anwendungen. Es ist nicht mehr
notig, die grundlegenden Funktionen ,,from scratch® selbst zu implementieren. Touchlibraries wie
TouchScript iibernehmen das fiir einen und bieten eine gute Grundlage, um auf ihnen weiter auf-
zubauen und sie seinen eigenen Bediirfnissen und Anspriichen anzupassen.

Wie sich gezeigt hat, ist es aber nicht immer klug, sich vollends auf fertige Pakete zu verlassen.
Unitys UNet-Netzwerkfunktionen sind im aktuellen Zustand ein gutes Beispiel dafiir. Zwar konnen
auch hier die grundlegendsten Dinge von bereitgestellten Skripten iibernommen werden, sobald
die Anforderungen aber komplexer werden, sollte man moglichst schnell andere Wege finden, wie
die selbstindige Umsetzung mit den Netzwerkfunktionen der gewihlten Programmiersprache. So
lisst sich in manchen Fillen sicherlich viel Zeit und Arger ersparen.

Ein zudem positiver Aspekt war auch die sehr gute Annahme des Prototyps durch die Nutzer
der Studie. Die allgemeine Usabilityumfrage zeigte klar, dass der GroBteil sehr viel Spal3 bei der
Benutzung hatte. Das Thema Augmented Reality weckt eine Faszination, viele sind von den an-
gezeigten digitalen Modellen in der realen Welt begeistert und beschéftigen sich gerne mit ihnen.
Einige Probanden hatten sogar schon sehr grof3e Freude daran, sich die Modelle lediglich von allen
Seiten anzuschauen oder einzelne Objekte ohne bestimmten Sinn dahinter hin- und herzubewegen.

Durch die Nutzerstudie zeigte sich schlieBlich auch, dass der Prototyp gut geeignet ist, um
die gestellten Aufgaben zu 16sen. Er kann problemlos im architektonischen Bereich verwendet
werden, um zum Beispiel Planungsaufgaben zu iibernehmen, wie das Anpassen eines Grundrisses
oder das Auswihlen von bestimmten Materialien und Farben. Dem Grofteil der Probanden fielen
die gestellten Aufgaben leicht und sie konnten sich fiir die Anwendung begeistern. Die dynamische
Ladefunktion und Austauschbarkeit der Modelle macht sie bereits im Prototypenstadium zu einem
niitzlichen Werkzeug bei der AR-gestiitzten Planung und Présentation.

6.1.2 Beleuchtungsarten

Zusitzlich wurde in dieser Arbeit der entwickelte Prototyp dazu genutzt, Erkenntnisse iiber die
Verwendung verschiedener Beleuchtungsansitze in der Augmented Reality zu gewinnen. Durch
die Durchfithrung und Auswertung der Nutzerstudie ist dies gelungen. Drei Anwendungsfille fiir

65

6.2 Verbesserungen und Ausblick 6 FAZIT

eine AR-App wurden entwickelt, mit je drei Schattentypen umgesetzt und schlieBlich evaluiert.
Dabei konnten folgende Erkenntnisse gewonnen werden, welche kiinftig als Leitlinien fiir die
Wahl einer Beleuchtungsart bei entsprechenden Aufgaben genutzt werden konnen:

1. Geht es um die Position des Schattenwurfs werden klare scharfkantige dynamische
Schatten priferiert: Diese Aussage konnte bestitigt werden.

2. Bei der Wahrnehmung eines Grundrisses spielt die Schattierung keine wichtige Rolle:
Auch diese Aussage spiegelte sich in den Ergebnissen der Studie wider. Es kann also eine
Uberlegung wert sein, in so einem Szenario sogar ginzlich auf Schatten zu verzichten, um
Vorarbeit und Rechenkapazitit einzusparen.

3. Bei der Beurteilung von Materialitit bevorzugen Nutzer die hochqualitativen stati-
schen Schatten: Diese Hypothese konnte teilweise bestitigt werden. Zwar halfen die sta-
tischen Schatten nicht direkt bei der Beurteilung des Materials, sie wurden aufgrund der
Optik jedoch priferiert.

6.2 Verbesserungen und Ausblick

Natiirlich zeigten sich auch Punkte, die zukiinftig Ansétze fiir Verbesserungen bieten. Die An-
wendung ist ein Prototyp und deshalb nicht vollends optimiert. So stiirzte er ungefihr einmal pro
Studie ab und das ohne jegliche Fehlermeldungen im Logsystem. Eventuell lauft bei der Benut-
zung der Arbeitsspeicher des Endgeriits voll und das Betriebssystem beendet die Anwendung von
aulen. Auch der Akkuverbrauch des Prototyps ist noch relativ hoch, Performanzprobleme wie
Ruckeln traten jedoch nicht auf. Die meiste Zeit lief das System durchaus zuverlidssig und fliissig.

Abseits von den erwihnten Fehlerbehebungen sind auch eine Reihe von Funktionserweiterun-
gen denkbar. So wire der Direktimport von FBX-Modell-Dateien sinnvoll, denn so muss der Er-
steller der Modelle nicht den Weg iiber Unity gehen, wenngleich dieser Weg auch Vorteile bei der
Feinanpassung bietet. Um nur schnell ein Modell anzuzeigen, wire die erweiterte Funktion niitz-
lich. Umsetzbar wire dies zum Beispiel iiber die Nutzung eines kostenpflichtigen Unity-Plugins.

Statt die 3D-Modelle nur lokal auszulesen wire zusétzlich eine Anbindung an das Internet
oder eine Cloud denkbar. User konnten ihre eigenen Modelle dort hochladen, bewerten und sich
die Kreationen anderer Nutzer in AR ansehen.

Auch die nachtrigliche Austauschbarkeit des Trackers ist aufgrund der von Vuforia vorge-
schriebenen Vorgehensweise iiber die Entwicklerwebsite zur Registrierung der Tracker zum jetzi-
gen Stand nicht gegeben, wire jedoch ein angenehmes Feature.

Aus Usabilitysicht hat sich gezeigt, dass einige der Probanden trotz der einblendbaren Inter-
aktionsicons Probleme damit hatten, erlaubte Interaktionen zu erkennen. Dieser Punkt konnte mit
einer Anzeige der erlaubten Bewegungsbereiche durch Grafiken oder der Objekte als ,,Ghosts*,
also halb durchsichtiger Kopien, verbessert werden. Um die manipulierbare Geometrie kenntlich
zu machen wiirden sich Konturlinien oder ein Gliiheffekt um dieselben eignen.

Fiir die weitere Zukunft bieten sich auch Umsetzungen fiir neue Endgeréte an. Sobald AR-
Brillen oder AR-spezifische Tablets tatsdchlich marktreif sind und breite Akzeptanz finden, ist bei
der Erfahrung der virtuellen Welt auch mit dieser Anwendung sicherlich ein Mehrwert gegeben.

66

N AW =

[c BN e

10
11

12
13
14
16
17
18
19

[\OT)
W = O

~N

[NS NS (O I NS T NS I O I\
W

o0

36

38
39
40
41
42
43
44
45
46
47
48
49
50

Anhang

Python-Skript zur Automatisierung des Backvorgangs in Cinema 4D

import c4d

from c4d import gui

Runs through Octane Object Tags and increments Bake ID.

copies octane baking camera for each frame

to camswitcher, changes its Baking Group ID and cycles according.

REQUIREMENTS (see .c4d file for example):

— Octane Camera with baking enabled

— Object(s) to bake with Octane Object Tag

— camswitcher object with xpresso from .c4d file

— Render save path with ’Current Camera’ token ($camera)

class Objectlterator
#class src: http ://cgrebel.com/2015/03/c4d—python—scene—iterator/
def __init__ (self, baseObject):
self.baseObject = baseObject
self.currentObject = baseObject
self.objectStack = []
self.depth = 0
self .nextDepth = 0

def __iter__(self):
return self

def next(self):
if self.currentObject == None
raise Stoplteration

obj = self.currentObject
self.depth = self.nextDepth

child = self.currentObject.GetDown ()

if child
self .nextDepth = self.depth + 1
self.objectStack .append(self.currentObject.GetNext())
self.currentObject = child

else
self.currentObject = self.currentObject.GetNext ()
while(self.currentObject == None and len(self.objectStack) > 0)

self.currentObject = self.objectStack.pop()
self .nextDepth = self.nextDepth — 1
return obj

class Taglterator:
#class src: http ://cgrebel.com/2015/03/c4d—python—scene—iterator/
def __init__ (self, obj):
currentTag = None
if obj
self.currentTag = obj.GetFirstTag ()

def iter__ (self):

return self

def next(self):
tag = self.currentTag

if tag == None
raise Stoplteration

self.currentTag = tag.GetNext()

67

60 return tag

61

62 def main():

63

64 doc. StartUndo ()

65

66 obj = doc.GetFirstObject ()
67 scene = Objectlterator (obj)

68

69 bakeCam = None

70 camSwitcher = doc.SearchObject("camswitcher")

71 if camSwitcher != None:

72 #delete old cams

73 for child in camSwitcher. GetChildren () :

74 doc . AddUndo (c4d .UNDOTYPE_DELETE, child)

75 child .Remove ()

76

77 bakeobjects = []

78

79 counter = 2

80 bakingcamcounter = 0

81

82 for obj in scene:

83

84 tags = Taglterator (obj)

85 for tag in tags:

86 if tag.GetType() == 1029603: #octaneobject tag

87 doc . AddUndo (c4d .UNDOTYPE_CHANGE, tag)

88 tag[c4d.OBJECTTAG_BAKEID] = counter

89 bakeobjects.append ("ID_"+str (counter).zfill(2) + "_" + obj.GetName())

90 print obj.GetName(), "| Bake ID:", counter

91 counter += 1

92 elif tag.GetType() == 1029524 and tag[c4d.OCT_CAMERA _TYPE_SELECT] == 2: #
OctaneCam and baking

93 if bakingcamcounter ==

94 bakeCam = obj

95 bakingcamcounter +=1

96

97 if bakingcamcounter > 1:

98 gui.MessageDialog ("Found " + str(bakingcamcounter) + " baking cameras.

Using the first one.")
99
100 fps = doc[c4d.DOCUMENT FPS]
101 doc.SetMinTime (c4d.BaseTime (2, fps))
102 doc.SetMaxTime (c4d.BaseTime(counter — 1,fps))
103 doc.SetLoopMinTime (c4d.BaseTime (2, fps))
104 doc.SetLoopMaxTime (c4d.BaseTime (counter — 1,fps))
105

106 if bakeCam != None and camSwitcher != None:
107

108 #reverse list

109 bakeobjects.reverse ()

110 index = len(bakeobjects) + 1

111

112 for bakeobj in bakeobjects:

113 newcam = bakeCam.GetClone ()

114 newcam . SetName (bakeobj)

115 newcam. InsertUnder (camSwitcher)
116

117 #change baking ID

118 tags = Taglterator (newcam)

119 for tag in tags:

68

120 if tag.GetType() == 1029524: #OctaneCam

121 tag [c4d .OCT_BAKECAMERA_GROUP_ID] = index
122 index —= 1

123

124 doc . AddUndo (c4d .UNDOTYPE_NEW, newcam)

125

126 doc .EndUndo ()

127 c4d.EventAdd ()

128

129

130 if __name__==’__main__
131 main ()

2.

70

Abbildungsverzeichnis

1.1

2.1

2.2

23

24

2.5
2.6

2.7
2.8
29
3.1
32
33
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
5.1
5.2

(a) Die Augmented Reality App Pokémon GO [35], (b) Die AR-Brille Microsoft
HoloLens [29]. e
(a) MARA, ein Mobiltelefon mit zusétzlicher Sensorhardware [21], (b) Optisches
Tracking mit klassischem schwarzweiflen 2D-Marker [22].
Die hohe Qualitit der Darstellung nach Kan et al. [22] mit Refraktion im Glaskor-
per sowie indirekter Illumination. Beide Objekte im Vordergrund sind virtuell. . .
Eine mit 3D-Druck erstellte Shading Probe nach Calian et al. [6]. Das rechte Bild
zeigt die ermittelten Shadingwerte der verschiedenen Messpunkte.
(a) Eine Shadow Map mit Tiefeninformationen aus Sicht der Lichtquelle, (b) Ali-
asing bei Shadow Mapping [8].
Berechnete Shadow Volumes, hier in gelb dargestellt [68].
(a) Eine Szene in Wireframeansicht, (b) Abgewickelte UV-Map des Modells, (c)
Szene mit statischer Beleuchtung gerendert, (d) Gebackene Beleuchtungstextur
desModells. e e
Dual Lightmaps in Unity 4.6 [54]. o
Verschiedene Arten des Schattenwurfs. L.

(a) TUI nach Ishii und Ullmer [19], (b) Durch Gesten steuerbares AR-Schach [12].

Vergleich der Programmoberflichen von Unity und Unreal [60].
Mit dem Object Scanner erzeugte Trackinghiille eines realen Modells [67].

Einbindung der realen Umgebung in die Spielwelt mithilfe von Smart Terrain [65].

Die Programmoberfliche von Maxon Cinema 4D RI5.
Die benotigte Objekthierarchie fiir die Translation in zwei Ausfithrungen.

Die benétigte Objekthierarchie fiir die Rotation.
Die bendétigte Objekthierarchie fiir die Skalierung.
Die benétigte Objekthierarchie fiir eine Kombination der Manipulationen.
Die zwei Sonderbefehle. oL Lo
Der Interaktionsspielplatz oL oo
Die Transformationskombination, .
DasHaus e
Objekthierarchieund Tags,
Das Octane-ObjectTag
Das Octane-CameraTag
Die Einstellungen des ARCamera-Objekts
Die Einstellungen des ImageTarget-Objekts
Die TouchScript-Skripte eines Objekts, das alle drei Grundmanipulationen erlaubt.
Die Netzwerkarchitektur. o 0 0 L.
Die Farbpalette der Anwendung.
Der Weg durch das Hauptmenii.
Die Prisentationsansicht des Presenters.
Das aufgeklappte Menii der Présentationsansicht eines Presenters.
Der Modellbrowser nach Tap auf Load.
Der Scale-Slider.
Die InteraktionSicons. Lo e e
Das Fortschrittsinformationsfenster beim Empfangen eines AssetBundles.

Das Transform Gesture Script e
Hintergrund der Berechnung eines giiltigen Ziels
Die QoS-Kanile von UNet. i e
Das Szenario Sonneneinstrahlung mit dynamischer Beleuchtung.
Das Szenario Grundriss.o o

10
11
12
16
17
18
24
25
25
26
26
27
27
28
28
29
30
30
33
34
35
38
42
43
44
44
45
46
46
47
48
49
50
54
54

71

72

53
54

5.5
5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14

Das Szenario Materialitdt.o
Der in der Nutzerstudie verwendete Tracker. Das Firmenlogo unten rechts wurde
aus Lizenzgriinden in dieser Abbildung unkenntlich gemacht.
Erfahrungshintergrund der Probanden.
Die allgemeinen Usabilityergebnisse. Die Zahlen entsprechen der Anzahl der Pro-
banden. L
Die Einschitzungen der statischen Schatten im Anwendungsfall Sonneneinstrah-

Die Einschitzungen der dynamischen Schatten im Anwendungsfall Sonnenein-
strahlung. e e e e e
Die Favoritenwahl des Anwendungsfalls Sonneneinstrahlung.
Die Antworten zum Einfluss der Schatten des Anwendungsfalls Grundriss.

Die Favoritenwahl des Anwendungsfalls Grundriss.
Die Antworten zum Einfluss der Schatten des Anwendungsfalls Materialitiit.

Die Favoritenwahl des Anwendungsfalls Materialitat.
Die Ergebnisse des Datenloggings.

Inhalt der beigelegten CD

Elektronische Version der Arbeit im LaTeX-Originalformat und als PDF
Quellcode der Anwendung mit Unity-Projekt.

Prototyp als Android-APK-Datei

Entwicklungs- und Studien-AssetBundle

Benutzter Tracker zum Ausdrucken

Excel-Dokumente der gesammelten Daten aus der Nutzerstudie

Zitierte Quellen in elektronischer Form

Prisentationsfolien der Antrittsrede

Inhaltsverzeichnis und Hilfe zur CD

73

74

Literatur

[1] Aila, Timo and Samuli Laine: Alias-free shadow maps. Rendering techniques, 2004:15th,
2004.

[2] Augment. http://www.augment.com/. Aufgerufen am 22.05.2016.

[3] Autodesk: Fbx. http://www.autodesk.com/products/fbx/overview. Aufgerufen am
02.07.2016.

[4] Azuma, Ronald T, Bruce R Hoff, Howard E Neely III, Ronald Sarfaty, Michael J Daily, Gary
Bishop, Vern Chi, Greg Welch, Ulrich Neumann, Suya You, et al.: Making augmented reality
work outdoors requires hybrid tracking. In Proceedings of the First International Workshop
on Augmented Reality, volume 1. Citeseer, 1998.

[5] Borg, Mathias, Martin M Paprocki, and Claus B Madsen: Perceptual evaluation of photo-
realism in real-time 3d augmented reality. In Computer Graphics Theory and Applications
(GRAPP), 2014 International Conference on, pages 1-10. IEEE, 2014.

[6] Calian, Dan A, Kenny Mitchell, Derek Nowrouzezahrai, and Jan Kautz: The shading probe:
fast appearance acquisition for mobile ar. In SIGGRAPH Asia 2013 Technical Briefs,
page 20. ACM, 2013.

[7] Catmull, Edwin: A subdivision algorithm for computer display of curved surfaces. Technical
report, DTIC Document, 1974.

[8] Chan, Eric and Frédo Durand: An efficient hybrid shadow rendering algorithm. Rendering
Techniques, 2004:15th, 2004.

[9] Crow, Franklin C: Shadow algorithms for computer graphics. In Acm siggraph computer
graphics, volume 11, pages 242-248. ACM, 1977.

[10] Debevec, Paul: Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography. In ACM
SIGGRAPH 2008 classes, page 32. ACM, 2008.

[11] Donath, Andreas: Apple kauft Miinchner Augmented-Reality-Firma. http://www.golem.

de/news/metaio-apple-kauft-muenchner-augmented-reality-firma-1505-114330.

html. Aufgerufen am 22.05.2016.

[12] Dorfmuller-Ulhaas, Klaus and Dieter Schmalstieg: Finger tracking for interaction in aug-
mented environments. In Augmented Reality, 2001. Proceedings. IEEE and ACM Interna-
tional Symposium on, pages 55-64. IEEE, 2001.

[13] Google: Glass. https://www.google.com/glass/start/. Aufgerufen am 05.06.2016.

[14] Google: Project Tango. https://www.google.com/atap/project-tango/. Aufgerufen
am 22.05.2016.

[15] Gruber, Lukas, Tobias Langlotz, Pintu Sen, Tobias Hoherer, and Dieter Schmalstieg: Effi-
cient and robust radiance transfer for probeless photorealistic augmented reality. In Virtual
Reality (VR), 2014 iEEE, pages 15-20. IEEE, 2014.

[16] Heidmann, Tim: Real shadows, real time. Iris Universe, 18:28-31, 1991.

[17] IDC: Smartphone os market share, 2015 q2. http://www.idc.com/prodserv/
smartphone-os-market-share. jsp. Aufgerufen am 05.06.2016.

75

[18] Isard, Michael and Andrew Blake: Contour tracking by stochastic propagation of conditional
density. In Computer Vision-ECCV’96, pages 343—-356. Springer, 1996.

[19] Ishii, Hiroshi and Brygg Ullmer: Tangible bits: towards seamless interfaces between peo-
ple, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human factors in
computing systems, pages 234-241. ACM, 1997.

[20] Jacobs, Katrien and Céline Loscos: Classification of illumination methods for mixed reality.
In Computer Graphics Forum, volume 25, pages 29-51. Wiley Online Library, 2006.

[21] K&héri, Markus and David J Murphy: Mara: Sensor based augmented reality system for
mobile imaging device. In 5th IEEE and ACM International Symposium on Mixed and
Augmented Reality, volume 13, 2006.

[22] Kan, Paul and Hannes Kaufmann: Differential irradiance caching for fast high-quality light
transport between virtual and real worlds. In Mixed and Augmented Reality (ISMAR), 2013
IEEE International Symposium on, pages 133-141. IEEE, 2013.

[23] Kasahara, Shunichi, Valentin Heun, Austin S Lee, and Hiroshi Ishii: Second surface: multi-
user spatial collaboration system based on augmented reality. In SIGGRAPH Asia 2012
Emerging Technologies, page 20. ACM, 2012.

[24] Kato, Hirokazu and Mark Billinghurst: Marker tracking and hmd calibration for a video-
based augmented reality conferencing system. In Augmented Reality, 1999.(IWAR’99) Pro-
ceedings. 2nd IEEE and ACM International Workshop on, pages 85-94. IEEE, 1999.

[25] Lang, Peter, Alben Kusej, Axel Pinz, and Georg Brasseur: Inertial tracking for mobile
augmented reality. In Instrumentation and Measurement Technology Conference, 2002.
IMTC/2002. Proceedings of the 19th IEEE, volume 2, pages 1583—-1587. IEEE, 2002.

[26] Layar. https://www.layar.com/about/. Aufgerufen am 22.05.2016.

[27] Lowe, David G.: Fitting parameterized three-dimensional models to images. 1EEE Transac-
tions on Pattern Analysis & Machine Intelligence, (5):441-450, 1991.

[28] Malik, Shahzad, Chris McDonald, and Gerhard Roth: Hand tracking for interactive pattern-
based augmented reality. 2002.

[29] Microsoft. https://www.microsoft.com/microsoft-hololens/en-us/
why-hololens. Aufgerufen am 14.07.2016.

[30] Microsoft: Hololens. https://wuw.microsoft.com/microsoft-hololens/en-us.
Aufgerufen am 05.06.2016.

[31] Milgram, Paul and Fumio Kishino: A taxonomy of mixed reality visual displays. IEICE
TRANSACTIONS on Information and Systems, 77(12):1321-1329, 1994.

[32] Mings, Josh: Excuse me, scrawl. your 3d drawings are crowd-
ing my reality. http://www.solidsmack.com/3d-cad-technology/

excuse-me-scrawl-your-3d-drawings-are-crowding-my-reality/. Aufgerufen
am 29.05.2016.

[33] Motion, Leap. https://www.leapmotion.com/. Aufgerufen am 14.07.2016.

[34] Newman, Joseph, Martin Wagner, Martin Bauer, Asa MacWilliams, Thomas Pintaric, Dag-
mar Beyer, Daniel Pustka, Franz Strasser, Dieter Schmalstieg, and Gudrun Klinker: Ubiqui-
tous tracking for augmented reality. In Mixed and Augmented Reality, 2004. ISMAR 2004.
Third IEEE and ACM International Symposium on, pages 192-201. IEEE, 2004.

76

[35] niantic. https://www.nianticlabs.com/img/posts/EncounterO.png. Aufgerufen
am 14.07.2016.

[36] Norman, Donald A: The design of everyday things: Revised and expanded edition. Basic
books, 2013.

[37] Nowrouzezahrai, Derek, Stefan Geiger, Kenny Mitchell, Robert Sumner, Wojciech Jarosz,
and Markus Gross: Light factorization for mixed-frequency shadows in augmented reality.
In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on,
pages 173—-179. IEEE, 2011.

[38] Park, Jun, Suya You, and Ulrich Neumann: Natural feature tracking for extendible robust
augmented realities. In Proc. Int. Workshop on Augmented Reality, 1998.

[39] Patow, Gustavo and Xavier Pueyo: A survey of inverse rendering problems. In Computer
graphics forum, volume 22, pages 663-687. Wiley Online Library, 2003.

[40] Perez, Sarah: Pokémon go tops twitter’s daily users, sees more en-
gagement than facebook. https://techcrunch.com/2016/07/13/
pokemon-go-tops-twitters-daily-users-sees-more-engagement-than-facebook.
Aufgerufen am 14.07.2016.

[41] Pinz, Axel, Markus Brandner, Harald Ganster, Albert Kusej, Peter Lang, and Miguel Ribo:
Hybrid tracking for augmented reality. OGAI Journal, 21(1):17-24, 2002.

[42] Poupyrev, Ivan, Numada Tomokazu, and Suzanne Weghorst: Virtual notepad: handwriting
in immersive vr. In Virtual Reality Annual International Symposium, 1998. Proceedings.,
IEEE 1998, pages 126-132. IEEE, 1998.

[43] Pressigout, Muriel and Eric Marchand: Hybrid tracking algorithms for planar and non-
planar structures subject to illumination changes. In Proceedings of the 5th IEEE and ACM
International Symposium on Mixed and Augmented Reality, pages 52-55. IEEE Computer
Society, 2006.

[44] PTC: PTC Adds Augmented Reality Leader Vuforia to Portfolio. http://www.ptc.com/
about/history/vuforia. Aufgerufen am 22.05.2016.

[45] Reeves, William T, David H Salesin, and Robert L Cook: Rendering antialiased shadows
with depth maps. In ACM Siggraph Computer Graphics, volume 21, pages 283-291. ACM,
1987.

[46] Rohmer, Kai, Wolfgang Buschel, Raimund Dachselt, and Thorsten Grosch: Interactive near-
field illumination for photorealistic augmented reality on mobile devices. In Mixed and
Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pages 29-38. 1EEE,
2014.

[47] Rolland, Jannick P, Larry Davis, and Yohan Baillot: A survey of tracking technology for
virtual environments. Fundamentals of wearable computers and augmented reality, 1:67—
112, 2001.

[48] Schmalstieg, Dieter, Anton Fuhrmann, and Gerd Hesina: Bridging multiple user interface
dimensions with augmented reality. In Augmented Reality, 2000.(ISAR 2000). Proceedings.
IEEE and ACM International Symposium on, pages 20-29. IEEE, 2000.

[49] Shi, Jianbo and Carlo Tomasi: Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on,
pages 593-600. IEEE, 1994.

77

[50]
[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

78

Stiktu. http://blog.stiktu.com/. Aufgerufen am 22.05.2016.
String. http://string.co/. Aufgerufen am 22.05.2016.
TouchScript. http://touchscript.github.io/. Aufgerufen am 01.07.2016.

Tsang, Michael, George W Fitzmaurice, Gordon Kurtenbach, Azam Khan, and Bill Buxton:
Boom chameleon: simultaneous capture of 3d viewpoint, voice and gesture annotations on
a spatially-aware display. In Proceedings of the 15th annual ACM symposium on User
interface software and technology, pages 111-120. ACM, 2002.

Unity3D: Documentation 4.6 lightmapping in-depth. http://docs.unity3d.com/460/
Documentation/Manual/LightmappingInDepth.html. Aufgerufen am 29.05.2016.

Unity3D: Documentation shadow overview. http://docs.unity3d.com/Manual/
ShadowOverview.html. Aufgerufen am 29.05.2016.

Unreal-Engine: Assetbundles. https://docs.unity3d.com/Manual/
AssetBundlesIntro.html. Aufgerufen am 01.07.2016.

Unreal-Engine: Distance field ambient occlusion. https://docs.
unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/
DistanceFieldAmbientOcclusion/index.html. Aufgerufen am 29.05.2016.

Unreal-Engine: Ray traced distance field soft shadows. https://docs.
unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/
RayTracedDistanceFieldShadowing/. Aufgerufen am 29.05.2016.

Unreal-Engine: Shadow casting. https://docs.unrealengine.com/latest/INT/
Engine/Rendering/LightingAndShadows/Shadows/. Aufgerufen am 29.05.2016.

Unreal-Engine: Unreal engine 4 for unity developers. https://docs.unrealengine.
com/latest/INT/GettingStarted/FromUnity/. Aufgerufen am 05.06.2016.

Van Krevelen, DWF and R Poelman: A survey of augmented reality technologies, applica-
tions and limitations. International Journal of Virtual Reality, 9(2):1, 2010.

Vuforia. http://www.vuforia.com/. Aufgerufen am 22.05.2016.

Vuforia: Extended Tracking. https://developer.vuforia.com/library/articles/
Training/Extended-Tracking. Aufgerufen am 22.05.2016.

Vuforia: Getting Started. https://developer.vuforia.com/library/
getting-started. Aufgerufen am 10.06.2016.

Vuforia: How To Play the Penguin App . https://developer.vuforia.com/
library/articles/Training/Vuforia-0Object-Scanner-Users-Guide. Aufgerufen
am 10.06.2016.

Vuforia: Object Recognition. https://developer.vuforia.com/library/articles/
Training/Object-Recognition. Aufgerufen am 22.05.2016.

Vuforia: Vuforia Object Scanner . https://developer.vuforia.com/library/
articles/Solution/How-To-Play-the-Penguin-App. Aufgerufen am 10.06.2016.

Wikimedia. https://commons.wikimedia.org/wiki/File:Shadow_volume_
illustration.png. Aufgerufen am 29.05.2016.

[69] Wikitude. http://www.wikitude.com/about/. Aufgerufen am 22.05.2016.

[70] Williams, Lance: Casting curved shadows on curved surfaces. In ACM Siggraph Computer
Graphics, volume 12, pages 270-274. ACM, 1978.

[71] Woo, Andrew, Pierre Poulin, and Alain Fournier: A survey of shadow algorithms. Computer
Graphics and Applications, IEEE, 10(6):13-32, 1990.

[72] Zhang, Xiang, Stephan Fronz, and Nassir Navab: Visual marker detection and decoding in ar
systems: A comparative study. In Proceedings of the 1st International Symposium on Mixed
and Augmented Reality, page 97. IEEE Computer Society, 2002.

[73] Zhou, Feng, Henry Been Lirn Duh, and Mark Billinghurst: Trends in augmented reality
tracking, interaction and display: A review of ten years of ismar. In Proceedings of the
7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 193-202.
IEEE Computer Society, 2008.

79

